- Hbase深入浅出
天才之上
数据存储Hbase大数据存储
目录HBase在大数据生态圈中的位置HBase与传统关系数据库的区别HBase相关的模块以及HBase表格的特性HBase的使用建议Phoenix的使用总结HBase在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是Hadoop和Hadoop中的HDFS模块。大家熟知的Spark、以及Hadoop的MapReduce,可以理解为一种计算框架。而HDFS,我们可以认为是为计算框架服务的存
- HBase简介:高效分布式数据存储和处理
代码指四方
分布式hbase数据库大数据
HBase简介:高效分布式数据存储和处理HBase是一个高效的、可扩展的分布式数据库,它是构建在ApacheHadoop之上的开源项目。HBase的设计目标是为大规模数据存储和处理提供高吞吐量和低延迟的解决方案。它可以在成百上千台服务器上运行,并能够处理海量的结构化和半结构化数据。HBase的核心特点包括:分布式存储:HBase使用Hadoop分布式文件系统(HDFS)作为底层存储,数据被分布在集
- 在Hadoop集群中实现数据安全:技术与策略并行
Echo_Wish
实战高阶大数据hadoop大数据分布式
在Hadoop集群中实现数据安全:技术与策略并行随着大数据技术的广泛应用,Hadoop已经成为处理和存储海量数据的首选平台。然而,随着数据规模的扩大,如何确保Hadoop集群中的数据安全也成为了亟待解决的难题。毕竟,数据安全不仅关系到企业的隐私保护,也直接影响到数据的可信度与可用性。本文将探讨如何在Hadoop集群中实现数据安全,分析数据加密、访问控制、审计日志等方面的技术与策略,并通过一些具体的
- python编写mapreduce job教程
weixin_49526058
pythonmapreducehadoop
在Python中实现MapReduce作业,通常可以使用mrjob库,这是一个用于编写和执行MapReduce作业的Python库。它可以运行在本地模式或Hadoop集群上。以下是一个简单的MapReduce示例,它计算文本文件中每个单词的出现次数。安装mrjob首先,你需要安装mrjob库。可以通过pip安装:pipinstallmrjobMapReduce示例:计算单词频率1.创建一个MapR
- Knox原理与代码实例讲解
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Knox原理与代码实例讲解1.背景介绍在现代分布式系统中,安全性和隔离性是非常重要的需求。ApacheKnox是一个反向代理服务器,旨在为ApacheHadoop集群提供单一入口点,增强安全性和集中化管理。它位于Hadoop集群与客户端应用程序之间,充当网关和负载均衡器的角色。Knox的主要目标是:提供集中式身份验证和授权,减轻客户端应用程序的负担。实现多租户支持,允许不同的组织或部门安全地共享同
- 数据驱动业务增长,E-MapReduce 真实案例解析
Anna_Tong
mapreduce大数据云计算数据分析阿里云实时计算数据驱动
在大数据时代,数据已经成为企业核心竞争力的关键因素之一。无论是电商、金融、物流还是制造业,企业都在探索如何更高效地处理、分析和利用海量数据,以实现精准决策、优化运营并提升业务增长。然而,面对PB级甚至EB级的数据规模,传统的本地大数据计算架构往往难以满足性能和成本的要求。如何在保证计算效率的同时降低运维成本,成为企业数据战略中的关键挑战。阿里云E-MapReduce(EMR)作为一款云原生的大数据
- Apache ZooKeeper 分布式协调服务
slovess
分布式apachezookeeper
1.ZooKeeper概述1.1定义与定位核心定位:分布式系统的协调服务,提供强一致性的配置管理、命名服务、分布式锁和集群管理能力核心模型:基于树形节点(ZNode)的键值存储,支持Watcher监听机制生态地位:Hadoop/Kafka等生态核心依赖,分布式系统基础设施级组件1.2设计目标强一致性:所有节点数据最终一致(基于ZAB协议)高可用性:集群半数以上节点存活即可提供服务顺序性:全局唯一递
- Hadoop常用端口号
海洋 之心
Hadoop问题解决hadoophbase大数据
Hadoop是一个由多个组件构成的分布式系统,每个组件都会使用一些特定的端口号来进行通信和交互。以下是Hadoop2.x常用的端口号列表:HDFS端口号:NameNode:50070SecondaryNameNode:50090DataNode:50010DataNode(数据传输):50020YARN端口号:ResourceManager:8088NodeManager:8042MapReduc
- Hadoop综合项目——二手房统计分析(可视化篇)
WHYBIGDATA
大数据项目hadoop大数据
Hadoop综合项目——二手房统计分析(可视化篇)文章目录Hadoop综合项目——二手房统计分析(可视化篇)0、写在前面1、数据可视化1.1二手房四大一线城市总价Top51.2统计各个楼龄段的二手房比例1.3统计各个城市二手房标签的各类比例1.4统计各个城市各个楼层的平均价格1.5统计各个城市二手房优势的各类比例1.6统计各个城市二手房数量和关注人数的关系1.7统计各个城市二手房规格的各类比例1.
- spark任务运行
冰火同学
Sparkspark大数据分布式
运行环境在这里插入代码片[root@hadoop000conf]#java-versionjavaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)[root@hadoop000conf]#echo$JAVA_HOME/home/hadoop/app/jdk1.8.0_144[root@hadoop000conf]#
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 集群与分片:深入理解及应用实践
一休哥助手
架构系统架构
目录引言什么是集群?集群的定义集群的类型什么是分片?分片的定义分片的类型集群与分片的关系集群的应用场景负载均衡高可用性分片的应用场景大数据处理数据库分片集群与分片的架构设计系统架构设计数据存储设计案例分析Hadoop集群Elasticsearch分片性能优化策略集群性能优化分片性能优化挑战和解决方案总结参考资料引言在现代计算系统中,处理大规模数据和提高系统的可靠性已经成为了基础需求。集群和分片是两
- hive spark读取hive hbase外表报错分析和解决
spring208208
hivehivesparkhbase
问题现象使用Sparkshell操作hive关联Hbase的外表导致报错;hive使用tez引擎操作关联Hbase的外表时报错。问题1:使用tez或spark引擎,在hive查询时只要关联hbase的hive表就会有问题其他表正常。“org.apache.hadoop.hbase.client.RetriesExhaustedException:Can’tgetthelocations”问题2:s
- 深入HBase——引入
黄雪超
大数据基础#深入HBase大数据数据库hbase
引入前面我们通过深入HDFS到深入MapReduce,从设计和落地,去深入了解了大数据最底层的基石——存储与计算是如何实现的。这个专栏则开始来看大数据的三驾马车中最后一个。通过前面我们对于GFS和MapReduce论文实现的了解,我们知道GFS在数据写入时,只对顺序写入有比较弱的一致性保障,而对于数据读取,虽然GFS支持随机读取,但在当时的硬件条件下,实际上也是支撑不了真正的高并发读取的;此外,M
- Ubuntu下配置安装Hadoop 2.2
weixin_30501857
大数据java运维
---恢复内容开始---这两天玩Hadoop,之前在我的Mac上配置了好长时间都没成功的Hadoop环境,今天想在win7虚拟机下的Ubuntu12.0464位机下配置,然后再建一个组群看一看。参考资料:1.InstallingsinglenodeHadoop2.2.0onUbuntu:http://bigdatahandler.com/hadoop-hdfs/installing-single-
- 2014 6月,比较老了
金金2019
AwesomeBigDataAcuratedlistofawesomebigdataframeworks,resourcesandotherawesomeness.Inspiredbyawesome-php,awesome-python,awesome-ruby,hadoopecosystemtable&big-data.Yourcontributionsarealwayswelcome!Awes
- Hive服务启动 之 metastore配置 和 hiveserver2
龍浮影
hive
Hive服务启动之metastore服务配置和hiveserver2 配置hive的时候都需要配置hive-site.xml,配置过程中可以选择hive直连或者使用metastore服务间接连接,那么他们之间有什么区别呢? 首先贴直连配置代码:javax.jdo.option.ConnectionURLjdbc:mysql://hadoop102:3306/metastore?useSSL=fal
- 5. clickhouse 单节点多实例部署
Toroidals
大数据组件安装部署教程clickhouse单节点多实例伪分布安装部署
环境说明:主机名:cmc01为例操作系统:centos7安装部署软件版本部署方式centos7zookeeperzookeeper-3.4.10伪分布式hadoophadoop-3.1.3伪分布式hivehive-3.1.3-bin伪分布式clickhouse21.11.10.1-2单节点多实例dolphinscheduler3.0.0单节点kettlepdi-ce-9.3.0.0单节点sqoop
- 蓝易云 - HBase基础知识
蓝易云
hbase数据库大数据phppython人工智能
HBase是一个分布式、可伸缩、列式存储的NoSQL数据库,它建立在Hadoop的HDFS之上,提供高可靠性、高性能的数据存储和访问。以下是HBase的基础知识:数据模型:HBase以表的形式存储数据,每个表由行和列组成,可以动态添加列族。每行由唯一的行键标识,列族和列限定符(Qualifier)用于唯一标识列。架构:HBase采用分布式架构,数据被分散存储在多个RegionServer上,每个R
- 腾讯云大数据套件TBDS与阿里云大数据能力产品对比
奋力向前123
数据库java人工智能腾讯云大数据阿里云
前言博主在接触大数据方向研究的时候是在2016年,那时候正是大数据概念非常火热的一个时间段,最著名的Google的3篇论文。GoogleFS、MapReduce、BigTable,奠定了大数据框架产品的基础。Google文件系统,计算框架和存储框架。往后所有的大数据产品和过程域无一不是在三个模块的基础上进行搭建,迭代,完善。我们最开始使用的都是开源的产品,比如hadoop,HDSF,MAPRedu
- DS缩写乱争:当小海豚撞上AI顶流,技术圈也逃不过“撞名”修罗场
数据库
DS缩写风云:从“小海豚”到“深度求索”的魔幻现实曾几何时,技术圈提到DS,人们脑海中浮现的是一只灵动的“小海豚”——ApacheDolphinScheduler(简称DS)。这个2019年诞生的分布式任务调度系统,凭借可视化DAG界面、多租户支持和对Hadoop/Spark生态的深度集成,一度是大数据工程师的“梦中情工”。然而,命运的齿轮在2025年初突然加速转动:杭州AI公司DeepSeek(
- 1. hadoop 1.0.0 source code
小阿小火苗
hadoop
https://archive.apache.org/dist/hadoop/core/hadoop-1.0.0/
- hadoop 1.0 基本概念了解
fenggfa
hadoophadoop大数据mapreduce
hadoop基本概念了解common:hadoop组件公共常用工具类Avro:Avro是用于数据序列化的系统。不同机器之间数据交流的保障。MapReduce:MapReduce是一种编程模型,分为Map函数和Reduce函数。Map函数负责将输入数据转化为中间值,中间值再通过Reduce函数转化成输出数据HDFS:HDFS是一个分布式文件系统。通过一次写入,多次读出来实现。Chukwa:Chukw
- 深入理解Hadoop 1.0.0源码架构及组件实现
隔壁王医生
本文还有配套的精品资源,点击获取简介:Hadoop1.0.0作为大数据处理的开源框架,在业界有广泛应用。该版本包含核心分布式文件系统HDFS、MapReduce计算模型、Common工具库等关键组件。通过分析源码,可深入理解这些组件的设计和实现细节,包括数据复制、任务调度、容错机制以及系统配置管理。本课程旨在指导学生和开发者深入学习Hadoop的核心原理和实践应用,为其在大数据领域的进一步研究和开
- 如何在Java中实现高效的分布式计算框架:从Hadoop到Spark
省赚客app开发者
javahadoopspark
如何在Java中实现高效的分布式计算框架:从Hadoop到Spark大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式计算框架,重点介绍Hadoop和Spark这两个在大数据处理领域中广泛使用的技术。一、Hadoop:基础分布式计算框架Hadoop是一个开源的分布式计算框架,最早由Apache开发,旨在处理海量数据。它的核心
- 分布式架构设计全解:以银行系统为例
聚合收藏
本文还有配套的精品资源,点击获取简介:分布式架构设计对于银行处理实时交易和数据分析至关重要,本文深入分析了Hadoop、F5、Dubbo和SpringCloud等技术在银行项目中的实际应用。Hadoop用于构建大数据仓库并支持数据分析,F5优化网络流量并确保高可用性,Dubbo和SpringCloud实现服务间的通信和微服务架构。通过这些技术的集成,银行可以建立高效且弹性的IT基础设施,满足快速变
- HiveQL命令(三)- Hive函数
BigDataMagician
HiveQL命令hivehadoop数据仓库
文章目录前言一、Hive内置函数1.数值函数2.字符串函数3.日期与时间函数4.条件函数5.聚合函数6.集合函数7.类型转换函数8.表生成函数(UDTF)前言在大数据处理和分析的过程中,数据的转换和处理是至关重要的环节。ApacheHive作为一种流行的数据仓库工具,提供了丰富的内置函数,帮助用户高效地处理和分析存储在Hadoop分布式文件系统(HDFS)中的数据。这些内置函数涵盖了数值计算、字符
- 【hudi】基于hive2.1.1的编译hudi-1.0.0源码
lisacumt
大数据
hudi版本1.0.0需要使用较低版本的hive,编译hudi只需要修改下类即可:org.apache.hudi.hadoop.hive.HoodieCombineHiveInputFormat一、复制org.apache.hadoop.hive.common.StringInternUtils找个hive2.3.9的源码包,创建包路径,并将此类复制到hudi的hudi-common到下。当然其他
- 掌握大数据--Hive全面指南
纪祥_ee1
大数据hivehadoop
1.Hive简介2.Hive部署方式3.Hive的架构图4.Hive初体验5.HiveSQL语法--DDL操作数据库1.Hive简介ApacheHive是建立在Hadoop之上的一个数据仓库工具,它提供了一种类似于SQL的查询语言,称为HiveQL,用于查询和分析存储在Hadoop分布式文件系统(HDFS)中的大规模结构化数据。以下是Hive的一些主要特点和介绍:1.类SQL查询语言:HiveSQ
- ZooKeeper 技术全解:概念、功能、文件系统与主从同步
专业WP网站开发-Joyous
Java分布式zookeeper分布式云原生
引言随着分布式系统变得越来越复杂,对协调服务的需求也在不断增长。ZooKeeper作为一个由Apache维护的开源分布式协调服务框架,广泛用于Hadoop生态系统和其他需要协调的分布式环境中。这一系统旨在解决分布式应用中常见的挑战,如配置管理、命名服务、分布式同步和集群管理等。ZooKeeper通过提供一个可靠的、简单的服务,确保了分布式系统中的数据一致性和协调性。它的设计哲学强调高可用性和高性能
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那