- 基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测
机器学习和优化算法
多头注意力机制深度学习神经网络人工智能机器学习单变量时序预测BiLSTM多头注意力机制
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测(单输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他算法的都可以定制!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上。【没有我赠送】2️⃣、评价指标包括:R
- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- 分治法的适用条件及基本步骤,快速幂算法
王哈哈嘻嘻噜噜
数据结构算法
分治法所能解决的问题一般具有一下几个特征*该问题的规模缩小到一定程度就可以容易的解决*该问题可以分解为若干个规模较小的问题*利用该问题分解的子问题的解可以合并为该问题的解*该问题所分解出的各个子问题是相互独立的divide-and-conquer(P){if(|p|1二分搜索技术非递减序的n个元素a[0:n-1],先要在这n个元素中找出一特定的元素x分析:设在a[l:r]中找x,mid=(l+r)
- ESP-IDF 双核任务调度及绑核
V.Code1024
ESP-IDFarm开发vscodec语言架构
1.任务调度基本原理在FreeRTOS中,任务调度是基于优先级的抢占式调度算法。简单来说,系统根据任务的优先级决定哪个任务会被执行。如果一个高优先级任务变为就绪状态,FreeRTOS会立刻抢占当前正在运行的任务,并将高优先级任务调度运行。基本概念:任务优先级:FreeRTOS的任务优先级范围从0到31,其中0表示最低优先级,31表示最高优先级。任务创建时会指定一个优先级,调度器会根据优先级决定哪个
- AI 赋能软件开发:从工具到思维的全面升级
二川bro
智能AI人工智能
AI赋能软件开发:从工具到思维的全面升级前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc一、AI如何改变软件开发1.1开发效率的提升代码生成:AI工具如GitHubCopilot可以自动生成代码片段,减少重复劳动错误检测:AI能够实时识别代码中的潜在错误和漏洞性能优化:AI可以自动优化算法和数
- 【算法】BST的非递归插入,删除,查询
孤邑
数据结构数据结构笔记学习c++
BST所谓二叉搜索树(BinarySearchTree,简称BST)大家应该都不陌生,它是一种特殊的二叉树。对于二叉树上的每一个节点,如果满足左孩子的值>classBSTree{private:/*data*///节点定义structNode{Node(Tdata=T()):data_(data),left_(nullptr),right_(nullptr){}Tdata_;Node*left_;
- 欧拉筛(线性筛):找出所有小于等于给定整数n的质数的算法
日月知行
java算法数论基础
大体思路:与埃氏筛不同,埃氏筛(Java):找出所有小于等于给定整数n的质数的算法-CSDN博客欧拉筛不是把素数的所有倍数标记为非素数,而是每扫过一个数(这个数用外循环的i来表示,遍历isPrime数组)(无论这个数是素数还是非素数)将该数与前面标记为素数的数相乘的数筛掉(内循环进行更新真正的质数primes质数列表)。确保每个合数仅被其最小质因数标记一次,这样才能解决重复标记问题,时间复杂度降为
- 《深度解析DeepSeek-M8:量子经典融合,重塑计算能效格局》
程序猿阿伟
量子计算
在科技飞速发展的今天,量子计算与经典算法的融合成为了前沿领域的焦点。DeepSeek-M8的“量子神经网络混合架构”,宛如一把钥匙,开启了经典算法与量子计算协同推理的全新大门,为诸多复杂问题的解决提供了前所未有的思路。量子计算,基于量子力学的奇妙特性,如量子比特的叠加与纠缠,展现出了超越经典计算的潜力。量子比特能够同时处于多个状态,实现并行计算,这使得量子计算机在处理某些特定问题时,具备指数级加速
- DeepSeek Coder 的依赖解析方法具体是如何实现的?
百态老人
人工智能大数据笔记
DeepSeekCoder的依赖解析方法主要通过以下步骤实现:数据收集与过滤首先,从GitHub等平台收集代码数据,并使用规则过滤掉不符合要求的代码。例如,过滤掉语法错误、可读性差或模块化低的代码,以确保数据的质量和多样性。解析文件依赖关系在这一阶段,系统会分析同一项目中代码文件之间的依赖关系。具体来说,通过一种基于拓扑排序的算法来识别这些依赖关系。这种方法不同于传统的从入度为零的节点开始的排序,
- 动态规划经典算法详解与C++实现
金外飞176
算法算法动态规划c++
动态规划经典算法详解与C++实现动态规划(DynamicProgramming)是解决复杂问题的重要方法,通过将问题分解为重叠子问题并记录中间结果实现高效计算。本文精选六大经典动态规划问题,提供详细的算法解析和C++实现代码。一、斐波那契数列(基础入门)算法原理通过存储已计算结果避免重复计算,时间复杂度从O(2^n)优化到O(n)状态转移方程dp[i]=dp[i-1]+dp[i-2]C++实现#i
- 为什么链表和顺序表删除数据的时间复杂度都为O(n),但是链表删除数据还更快
AredRabbit
数据结构算法链表数组
链表和顺序表(如数组)在删除数据时的时间复杂度通常都是O(n),但链表在实际操作中可能比顺序表更快。这是因为时间复杂度只描述了算法随输入规模增长的趋势,而没有考虑常数因子和具体操作的细节。以下是详细解释:1.时间复杂度分析顺序表(数组)删除操作:在顺序表中删除一个元素后,需要将后续的所有元素向前移动一位,以填补删除后的空缺。时间复杂度:移动元素的操作需要遍历后续的所有元素,因此时间复杂度为O(n)
- c语言闯算法--数组二分
衡玖
算法C语言算法c语言
记住一点,左闭右闭(前提数组有序)左右边界,取得到循环范围可以等中点计算防越界二分找位置二分查找(目标值一定存在)intsearch(int*nums,intnumsSize,inttarget){intl=0;intr=numsSize-1;intmiddle=0;while(ltarget){r=middle-1;}else{returnmiddle;}}return-1;}搜索插入位置(目标
- 基于YOLOv5的烟雾检测系统:从数据集准备到UI界面实现
深度学习&目标检测实战项目
YOLOui分类数据挖掘目标跟踪
1.引言烟雾是火灾发生的一个重要早期信号。烟雾检测能够在火灾初期及时识别并报警,为火灾的扑灭争取宝贵的时间。因此,烟雾检测的研究一直是计算机视觉领域中的一个热点问题。近年来,随着深度学习技术的发展,目标检测算法被广泛应用于烟雾检测,尤其是基于YOLOv5的目标检测模型,由于其较高的精度和较低的计算开销,已经成为许多实时检测系统的首选模型。在这篇博客中,我们将介绍如何使用YOLOv5模型进行烟雾检测
- C语言零基础入门教程(1)
岱宗夫up
C语言c语言算法学习
C语言是一种高效、灵活且功能强大的编程语言,广泛应用于系统软件开发、嵌入式系统、算法实现等多个领域。对于初学者来说,学习C语言不仅是掌握一门编程技能,更是开启编程世界大门的重要一步。本教程将从零开始,带你全面了解C语言的基础知识和核心概念,帮助你快速入门。一、C语言简介C语言由美国计算机科学家丹尼斯·里奇(DennisRitchie)于1972年在贝尔实验室开发,最初用于编写UNIX操作系统。它是
- 花束搭配【算法赛】
qystca
算法暴力二分模拟
0花束搭配【算法赛】-蓝桥云课问题描述为了庆祝三八妇女节,花店推出了“双花搭配”活动。花店中有n种鲜花,每种鲜花有两种属性:放在花束外部时,艳丽度为Ai;放在花束内部时,艳丽度为Bi。一束花需要由两种不同的鲜花组成,一种放在外部,另一种放在内部。如果一束花的“外部艳丽度之和”大于“内部艳丽度之和”,即满足Ai+Aj>Bi+Bj,则这束花被认为是“完美搭配方案”。现在,给定n种鲜花的艳丽度数组A和B
- SpringBoot整合MyBatis-Plus全攻略:从零实现高效CRUD
rider189
javaspringbootmybatis
一、MyBatis-Plus核心优势MyBatis-Plus作为MyBatis的增强工具包,在保留原生特性的基础上,提供了多项开箱即用的功能:自动生成基础CRUD操作内置代码生成器(3.5.3+版本支持最新模板引擎)强大的条件构造器Wrapper支持Lambda形式调用主键自动生成策略(支持雪花算法、UUID等)二、环境搭建与配置1.创建SpringBoot项目使用SpringInitializr
- Android 加解密算法工具类封装:AES、RSA、MD5 一站式解决方案
tangweiguo03051987
android算法AESDESMD5JAVA
在Android开发中,数据的安全性非常重要,尤其是敏感数据的存储和传输。为了实现数据加密和解密,我们可以封装一个通用的加解密工具类,支持常见的加密算法(如AES、RSA、DES等)。以下是一个基于AES对称加密算法的工具类封装示例,同时提供扩展性以支持其他算法。AES加解密工具类封装AES(AdvancedEncryptionStandard)是一种对称加密算法,加密和解密使用相同的密钥。以下是
- 大语言模型(LLM)入门学习路线图,从零基础到精通,理论与实践结合的最佳路径!
ai大模型应用开发
语言模型学习人工智能机器学习AI自然语言处理
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。大语言模型(LargeLanguageM
- 【忍者算法】深入探索:二叉树的最大深度之旅|LeetCode 104 二叉树的最大深度
忍者算法
忍者算法LeetCode题解秘籍算法leetcode链表数据结构职场和发展面试
深入探索:二叉树的最大深度之旅|LeetCode104二叉树的最大深度生命的高度:理解树的深度想象一棵树,它从地底向天空生长。树的深度不仅仅是枝干的长度,更是生命的垂直延伸。在二叉树的世界里,深度代表了从根节点到最远叶子节点的最长路径。这是一种从根本到极限的探索旅程。深度的本质:递归的诗与逻辑二叉树的最大深度(LeetCode第104题)本质上是一个递归问题,它蕴含着令人惊叹的优雅逻辑。想象你正站
- 机器学习算法(2)—— 线性回归算法
疯狂的石头。
算法机器学习线性回归
‘’‘构造数据集’‘’x=[[80,86],[82,80],[85,78],[90,90],[86,82],[82,90],[78,80],[92,94]]y=[84.2,80.6,80.1,90,83.2,87.6,79.4,93.4]‘’‘模型训练’‘’实例化一个估计器estimator=LinearRegression()使用fit方法进行训练estimator.fit(x,y)查看回归系数
- 【深度学习】Adam(Adaptive Moment Estimation)优化算法
辰尘_星启
机器学习--深度学习深度学习算法人工智能Adampytorchpython
概述Adam算法结合了动量法(Momentum)和RMSProp的思想,能够自适应调整每个参数的学习率。通过动态调整每个参数的学习率,在非平稳目标(如深度神经网络的损失函数)中表现优异目录基本原理和公式笼统说明:为什么Adam算法可以帮助模型找到更好的参数基本概念动量(Momentum):跟踪梯度的指数衰减平均(一阶矩),加速收敛并减少震荡。自适应学习率:跟踪梯度平方的指数衰减平均(二阶矩),调整
- 机器视觉3D上下料技术上的分析
视觉人机器视觉
杂说3dc#人工智能AI编程opencv开发语言
机器视觉3D上下料是工业自动化领域的重要应用,通过3D视觉技术引导机器人完成物料的精准抓取、定位和放置,尤其适用于复杂、无序或高精度的场景。以下是其核心内容梳理:核心组成3D视觉系统:硬件:常用3D相机(结构光、ToF、双目视觉等),如Kinect、IntelRealSense、工业级品牌(Keyence、康耐视,苏州大视通智能科技有限公司)。软件:点云处理(如PCL库)、三维匹配算法(ICP、深
- 算法竞赛中常用的STL容器
メ稀饭 你的笑
stl算法c++开发语言
目录前言一、STL是什么?二、竞赛中常见STL的容器1.string类2.vector3.stack4.queue5.priority_queue6.set7.map8.pair总结前言在我们的算法竞赛中,为了节约时间,我们不可能去手撕一个数据结构,所以在赛场上我们就要引入STL,以便我们节约时间,能有更多的时间处理更复杂的算法。一、STL是什么?STL(StandardTemplateLibra
- C++ STL 算法竞赛常用模板归纳汇总
小桥儿流水人家
c++算法开发语言蓝桥杯stl
向量vector(相当于可变长数组)/*STL库vector、deque、list、set、map、multiset、multimap、unordered_set、unordered_map、unordered_multiset、unordered_multimap、stack、queue、priority_queue、string、pair*/#include#includeusingnames
- 算法竞赛C++常用STL(自用收藏!!!!!!)
gusiler
算法c++stl数据结构算法
①vectorvector:又称变长数组,定义在头文件中,vector容器是动态空间,随着元素的加入,它的内部机制会自动扩充空间以容纳新的元素。因此vector的运用对于内存的合理利用与运用的灵活性有很大的帮助。vector的定义方式vectorv;//定义一个vector,其中的元素为int类型vectorv[N];//定义一个vector数组,其中有N个vectorvectorv(len);/
- benchmark和baseline的联系与区别
Lntano__y
人工智能深度学习机器学习
在深度学习算法中,benchmark(基准)和baseline(基线)是两个常用的概念,用于评估算法的性能和进行比较。尽管它们有一些相似之处,但它们在定义和使用上有一些区别。Benchmark(基准):基准是指作为参考标准的一组算法或数据集,通常是在特定任务或领域中广泛接受的准则。基准的目标是提供一个衡量算法性能的标准,以便其他算法可以与之进行比较。基准可以是一种算法、一个数据集或者是两者的结合。
- C/C++算法编程竞赛标准模板库(STL)篇:队列(queue)
BoFeather
C/C++算法学习之路c++c语言算法visualstudio
目录前言这个栏目是对我算法学习过程的同步记录,我也希望能够通过这个专栏加深自己对编程的理解以及帮助到更多像我一样想从零学习算法并参加竞赛的同学。在这个专栏的文章中我会结合在编程过程中遇到的各种问题并提出相应的解决方案。当然,如果屏幕前的你有更好的想法或者发现的错误也欢迎交流和指出!不喜勿喷!不喜勿喷!不喜勿喷!这章的内容非常重要!!那么事不宜迟,我们马上开始吧!一、queue队列1.基本介绍2.q
- 决策树(Decision Tree):机器学习中的经典算法
Jason_Orton
机器学习算法决策树随机森林人工智能
1.什么是决策树?决策树(DecisionTree)是一种基于树形结构的机器学习算法,适用于分类和回归任务。其核心思想是通过一系列的规则判断,将数据集不断划分,最终形成一棵树状结构,从而实现预测目标。在决策树中,每个内部节点表示一个特征,每个分支代表一个特征的取值,每个叶子节点对应一个类别或预测值。决策树的目标是构建一棵能够有效区分不同类别的树,并在测试数据上保持较好的泛化能力。2.决策树的工作原
- 算法与竞赛(第7章) - C++与STL基础三:队列以及优先队列的应用
Ssaty.
算法c++动态规划
第1关:STL模板之queue实例一:最少个数本关任务:给定N个非负整数,求解至少需要选多少个连续的数,它们的和不小于给定的整数S,特别的,若没有解,则输出0。//请在这里补充代码,完成本关任务/*********Begin*********/intn;ints;queueque;intans=
- AI产品大模型学习指南:清晰路线,AI产品经理必备知识点一网打尽!_AI产品经理
AGI大模型学习
人工智能产品经理LLM大模型学习学习知识图谱AI产品经理
一、AI产品经理知识扫盲1️⃣【AI的产品形态到底是什么】?没有固定形态。实际上AI只是一种对传统产品或服务赋能的手段而已,将各种“中间件”(通常是一种训练好的模型,当输入一定数据后自动返回一定的输出值)、传感器等不同形式的软件、硬件融入传统产品或服务的使用或体验流程中。AI只是一种工具而已,产品的终极目标仍然不变为用户创造最大价值,提供最佳用户体验。2️⃣【AI产品的三要素】算法+计算能力+数据
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite