《JAVA与模式》之装修者模式

装饰者模式

动态地将责任附加到对象上。若要扩展功能,装饰者提供了比继承更有弹性的替代方案。

具体被装饰者和抽象装饰类都继承于抽象被装饰者类,继承的是类型,而不是行为。行为来自装饰者和基础组件,或与其他装饰者之间的组合关系。

装饰模式的角色

  抽象构件角色(Component):给出一个抽象接口,以规范准备接收附加责任的对象。

  具体构件角色(Concrete Component):定义将要接收附加责任的类。

  装饰角色(Decorator):持有一个构件(Component)对象的引用,并定义一个与抽象构件接口一致的接口。

  具体装饰角色(Concrete Decorator):负责给构件对象“贴上”附加的责任。


装饰模式的特点

  装饰对象和真实对象有相同的接口。这样客户端对象就可以以和真实对象相同的方式和装饰对象交互。

  装饰对象包含一个真实对象的引用(reference)。

  装饰对象接收所有来自客户端的请求,它把这些请求转发给真实的对象。

  装饰对象可以在转发这些请求之前或之后附加一些功能。

  这样就确保了在运行时,不用修改给定对象的结构就可以在外部增加附加的功能。

 

代码

 1 public class Zhuangxiuzhe {
 2     public static void main(String[] args) {
 3         Zhuangxiuzhe zhuangxiuzhe=new Zhuangxiuzhe();
 4         Component component=zhuangxiuzhe.new ConcreteComponent();
 5         Component decorator=zhuangxiuzhe.new ConcreteDecorator1(component);
 6         decorator.doMethod();
 7         Component decorator2=zhuangxiuzhe.new ConcreteDecorator2(decorator);
 8         decorator2.doMethod();
 9         
10     }
11 
12     interface Component {
13 
14         public void doMethod();
15 
16     }
17 
18     class ConcreteComponent implements Component {
19 
20         public void doMethod() {
21             System.out.println("一般操作");
22 
23         }
24 
25     }
26     abstract class  Decorator implements Component{
27         
28         protected Component component;
29         public Decorator(Component component){
30             this.component=component;
31         }
32             
33         
34     }
35     class ConcreteDecorator1 extends Decorator{
36 
37         public ConcreteDecorator1(Component component) {
38             super(component);
39             
40         }
41         public void test1(){
42             System.out.println("ConcreteDecorator1 额外操作");
43         }
44 
45         public void doMethod() {
46             super.component.doMethod();
47             test1();
48         }
49     }
50     class ConcreteDecorator2 extends Decorator{
51         
52         public ConcreteDecorator2(Component component) {
53             super(component);
54             
55         }
56         
57         public void doMethod() {
58             super.component.doMethod();
59             test2();
60         }
61         
62         public void test2(){
63             System.out.println("ConcreteDecorator2 额外操作");
64         }
65     }
66     
67 
68 }

执行结果

一般操作
ConcreteDecorator1 额外操作
一般操作
ConcreteDecorator1 额外操作
ConcreteDecorator2 额外操作


 

 突然发现装修者模式跟责任链模式有点相同,自身都引用了抽象类,这样可以调用传入的包装类

区别在于功能上:责任链强调的是请求由谁来处理,而装修者模式则是对引入的对象的现有功能进行包装,增强改变

Java IO中的装饰模式

  在IO中,具体构件角色是节点流,装饰角色是过滤流

  FilterInputStream和FilterOutputStream是装饰角色,而其他派生自它们的类则是具体装饰角色。

我们来看看代码

抽象角色类InputStream

1 public abstract class InputStream implements Closeable {
2 
3 
4 //实现了read等方法
5 public int read(byte b[]) throws IOException {
6     return read(b, 0, b.length);
7     }
8 
9 }

具体角色类FileInputStream

1 public
2 class FileInputStream extends InputStream{
3 
4 
5 }

抽象包装类FilterInputStream

 1 public
 2 class FilterInputStream extends InputStream {
 3     /**
 4      * The input stream to be filtered. 
 5      */
 6     protected volatile InputStream in;
 7 
 8 
 9 protected FilterInputStream(InputStream in) {
10     this.in = in;
11     }
12 
13  public int read() throws IOException {
14     return in.read();
15     }
16 
17 
18 }

具体包装类BufferedInputStream

 1 public
 2 class BufferedInputStream extends FilterInputStream {
 3 
 4 public BufferedInputStream(InputStream in) {
 5     this(in, defaultBufferSize);
 6     }
 7 
 8 //完成了设置抽象角色类的映射
 9  public BufferedInputStream(InputStream in, int size) {
10     super(in);
11         if (size <= 0) {
12             throw new IllegalArgumentException("Buffer size <= 0");
13         }
14     buf = new byte[size];
15     }
16 
17 //read方法中调用fill()
18  public synchronized int read() throws IOException {
19     if (pos >= count) {
20         fill();
21         if (pos >= count)
22         return -1;
23     }
24     return getBufIfOpen()[pos++] & 0xff;
25     }
26  private void fill() throws IOException {
27         byte[] buffer = getBufIfOpen();
28     if (markpos < 0)
29         pos = 0;        /* no mark: throw away the buffer */
30     else if (pos >= buffer.length)    /* no room left in buffer */
31         if (markpos > 0) {    /* can throw away early part of the buffer */
32         int sz = pos - markpos;
33         System.arraycopy(buffer, markpos, buffer, 0, sz);
34         pos = sz;
35         markpos = 0;
36         } else if (buffer.length >= marklimit) {
37         markpos = -1;    /* buffer got too big, invalidate mark */
38         pos = 0;    /* drop buffer contents */
39         } else {        /* grow buffer */
40         int nsz = pos * 2;
41         if (nsz > marklimit)
42             nsz = marklimit;
43         byte nbuf[] = new byte[nsz];
44         System.arraycopy(buffer, 0, nbuf, 0, pos);
45                 if (!bufUpdater.compareAndSet(this, buffer, nbuf)) {
46                     // Can't replace buf if there was an async close.
47                     // Note: This would need to be changed if fill()
48                     // is ever made accessible to multiple threads.
49                     // But for now, the only way CAS can fail is via close.
50                     // assert buf == null;
51                     throw new IOException("Stream closed");
52                 }
53                 buffer = nbuf;
54         }
55         count = pos;
56     int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
57         if (n > 0)
58             count = n + pos;
59     }
60 
61 
62 }

fill()方法中除了自身操作外,我们看到了 int n = getInIfOpen().read(buffer, pos, buffer.length - pos);

1  private InputStream getInIfOpen() throws IOException {
2         InputStream input = in;
3     if (input == null)
4         throw new IOException("Stream closed");
5         return input;
6     }

在看看getInIfOpen()方法,我们就明白了 整个的过程

 

参考地址:

http://www.cnblogs.com/mengdd/archive/2013/02/12/2910302.html

http://blog.csdn.net/cai1213/article/details/8003445

http://xubindehao.iteye.com/blog/474636

 

 

 

 

 

你可能感兴趣的:(java)