使用I/O multipexing 的网络编程中,一般需要采用非阻塞网络编程的风格,防止服务端在处理高连接量大时候阻塞在某个文件描述符上面,比如某个socket 有大量的数据需要写,但是内核发送缓冲区已经填满,无法在一次write中将需要发送到数据发送出去,程序就会阻塞在该处,导致select/poll/epoll_wait() 此时不能处理其它到来的请求,同样read或者accept也可能出现阻塞的情况,比如当客户端发起connect,之后立刻关闭该链接,在服务端尚未调用accept之前就关闭了该连接,当后来服务端accept得以调用此时完成队列中又没有完成的三次握手的连接,accept就会导致进程睡眠(详细情况可以参见UNPv1非阻塞accept的描述)。因此I/O multiplexing 一般采用非阻塞网络编程的风格。
对于read/wirte 操作来说,如果采用了非阻塞编程则需要为每个connection配备应用层缓冲区,read端主要防止一次来到数据太多,write主要防止出现阻塞,可以把没有发送完成的数据写入缓冲区,等到socket 可写之后继续发送。如果在新一次write请求到来的时候,应用层写缓冲区中还有之前未发送完的数据,则应该先将上次未写入内核的数据写入内核缓冲区,保证发送到顺序性。此处给一个简单的例子。
#include <stdio.h> #include <sys/socket.h> #include <netinet/in.h> #include <unistd.h> #include <arpa/inet.h> #include <sys/types.h> #include <vector> #include <string.h> #include <stdlib.h> #include <map> #include <fcntl.h> #include <errno.h> #include <string> #include <iostream> #include <sys/select.h> #define SEVER_PORT 1314 #define MAX_LINE_LEN 1024 using namespace std; int Accept(int fd, struct sockaddr_in *addr) { socklen_t addr_len = static_cast<socklen_t>( sizeof *addr); int connfd,flags; connfd = accept(fd,reinterpret_cast<struct sockaddr *>(addr),&addr_len); flags = fcntl(connfd,F_GETFL,0); fcntl(connfd,F_SETFL,flags | O_NONBLOCK); if(connfd < 0) { int ErrorCode = errno; switch(ErrorCode) { case 0: case EWOULDBLOCK: case ECONNABORTED: case EPROTO: case EINTR: case EMFILE: errno = ErrorCode; printf("Accept Error: %s\n",strerror(ErrorCode)); break; default: break; } } return connfd; } int Read(int fd, map<int, string> &bufMap) { struct iovec iov[2]; char buf[MAX_LINE_LEN+1]; char exbuf[65535]; // 如果一次read很多数据,则动用该缓冲区 int nrcv; iov[0].iov_base = buf; iov[0].iov_len = MAX_LINE_LEN; iov[1].iov_base = exbuf; iov[1].iov_len = sizeof exbuf; nrcv = readv(fd, iov, 2);// 使用readv保证能将数据读取完 if(nrcv > MAX_LINE_LEN) { bufMap[fd] += string(buf) + string(exbuf); // test ! printf("extrabuf in use! \n"); } else if( nrcv > 0) { bufMap[fd] += string(buf); } else { return nrcv; } return nrcv; } int getSocketError(int fd) { int optval; socklen_t optlen = static_cast<socklen_t>(sizeof optval); if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &optval, &optlen) < 0) { return errno; } else { return optval; } } int main() { struct sockaddr_in cli_addr, server_addr; vector<int> client(FD_SETSIZE,-1); map<int ,string> bufMap;// 简易应用层缓冲区 fd_set rset,wrset,allset; int listenfd, connfd, sockfd, maxfd, nready, ix,maxid, nrcv,flags,nwrt,one; char addr_str[INET_ADDRSTRLEN]; int accepted = 0; server_addr.sin_family = AF_INET; server_addr.sin_addr.s_addr = htonl(INADDR_ANY); server_addr.sin_port = htons(SEVER_PORT); listenfd = socket(AF_INET,SOCK_STREAM,0); flags = fcntl(listenfd,F_GETFL,0); fcntl(listenfd,F_SETFL,flags | O_NONBLOCK); one = 1; setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,&one, sizeof(one)); if(bind(listenfd,(struct sockaddr *)&server_addr,sizeof server_addr) < 0) { printf("socket bind error: %s\n",strerror(errno)); return 0; } listen(listenfd,10); FD_ZERO(&rset); FD_ZERO(&wrset); FD_ZERO(&allset); FD_SET(listenfd,&allset); maxfd = listenfd; maxid = -1; while(1) { rset = allset; nready = select(maxfd + 1, &rset,&wrset,NULL,NULL); if(nready < 0) { printf("select error: %s\n",strerror(errno)); exit(1); } if(FD_ISSET(listenfd, &rset)) { connfd = Accept(listenfd,&cli_addr); printf("recieve from : %s at port %d\n", inet_ntop(AF_INET,&cli_addr.sin_addr,addr_str,INET_ADDRSTRLEN),cli_addr.sin_port); for(ix = 0; ix < static_cast<int>(client.size()); ix++) { if(client[ix] < 0) { client[ix] = connfd; break; } } printf("client[%d] = %d\n",ix,connfd); if( FD_SETSIZE == ix) { printf("too many client! \n"); exit(1); } if( connfd > maxfd) { maxfd = connfd; } FD_SET(connfd, &allset); accepted++; printf("accepted: %d\n",accepted); if(ix > maxid) { maxid = ix; } if(--nready == 0) { continue; } } for(ix = 0; ix <= maxid; ix++) { if((sockfd = client[ix]) < 0) { continue; } if(FD_ISSET(sockfd,&rset)) { int left_len = bufMap[sockfd].length(); if( 0 == (nrcv = Read(sockfd,bufMap))) { client[ix] = -1; printf("close! \n"); FD_CLR(sockfd,&allset); bufMap.erase(sockfd); close(sockfd); } else if ( nrcv > 0) { printf("nrcv = %d \n",nrcv); nrcv += left_len;//next time when client write to //nwrt = write(sockfd,bufMap[sockfd].c_str(),200);// 模拟还有剩余 nwrt = write(sockfd,bufMap[sockfd].c_str(),nrcv); if(nwrt < 0) { if( errno != EWOULDBLOCK) { printf("Write error: %s\n", strerror(errno)); } } printf("nwrt = %d \n",nwrt); if(nwrt == nrcv) // 全部写到了内核缓冲区 { bufMap[sockfd].clear(); //bufMap[sockfd].erase(0,nrcv); if(FD_ISSET(sockfd,&wrset)) { FD_CLR(sockfd,&wrset); } } else // 还有剩余 { printf("write left \n"); bufMap[sockfd].erase(0,nwrt); std::cout << " after erase: "<<bufMap[sockfd] <<std::endl; FD_SET(sockfd,&wrset);//开始关注写事件 } } else { int err = getSocketError(sockfd); printf("SocketError: %s\n",strerror(err)); } } if(FD_ISSET(sockfd,&wrset)) { nrcv = bufMap[sockfd].size(); printf("write again: nrcv left = %d \n",nrcv); nwrt = write(sockfd,bufMap[sockfd].c_str(),nrcv); if(nwrt == nrcv) { bufMap[sockfd].clear(); if(FD_ISSET(sockfd,&wrset)) { FD_CLR(sockfd,&wrset); } printf("Write complete! \n"); } else { bufMap[sockfd].erase(0,nwrt); } } if(--nready == 0) { break; } } } return 0; }