Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 59798 | Accepted: 18237 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
Source
【题目大意】
一个数列,每次操作可以是将某区间数字都加上一个相同的整数,也可以是询问一个区间中所有数字的和。(这里区间指的是数列中连续的若干个数)对每次询问给出结果。
【题目分析】
裸的区间更新线段树。
线段树单点更新和区间更新的区别:
1.每个结点中多了一个add值,代表该结点以下的结点需要增加的值;
2.build函数中,如果在建树的过程中就赋值给num,那么在建完树之后不要忘记pushup,因为此时只是叶子结点有值,上面的值都为空;这个在区间更新中很常用,因为区间更新中如果输入一个值,然后更新一个值,这样会很麻烦,会耗费更多的时间;
3.update函数中,区间更新多了一个upshdown函数,并且更新sum和add值的判断条件是树中结点的l~r和要更新的区间的l~r相等,此时sum加的值是整个区间的长度*要更新的值,然后add值记录后面每个结点需要加上的值,即:c;
4.upshdown函数最后不要忘了将延时标记add清零;
//Memory Time // K MS #include<algorithm> #include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<vector> #include<queue> #include<stack> #include<iomanip> #include<string> #include<climits> #include<cmath> #define MAX 110000 #define LL long long using namespace std; LL n,m; LL ans; struct Tree { LL l,r; LL sum,add; }; Tree tree[MAX*3]; void pushup(LL x) { LL tmp=2*x; tree[x].sum=tree[tmp].sum+tree[tmp+1].sum; } void pushdown(LL x) { LL tmp=2*x; tree[tmp].add+=tree[x].add; tree[tmp+1].add+=tree[x].add; tree[tmp].sum+=tree[x].add*(tree[tmp].r-tree[tmp].l+1); tree[tmp+1].sum+=tree[x].add*(tree[tmp+1].r-tree[tmp+1].l+1); tree[x].add=0; } void build(int l,int r,int x) { tree[x].l=l; tree[x].r=r; tree[x].add=0; if(l==r) { scanf("%lld",&tree[x].sum); return ; } int tmp=x<<1; int mid=(l+r)>>1; build(l,mid,tmp); build(mid+1,r,tmp+1); pushup(x); //如果在建树的过程中给sum赋值,记得后面要pushup } void update(LL l,LL r,LL c,LL x) { if(r<tree[x].l||l>tree[x].r) return ; if(l<=tree[x].l&&r>=tree[x].r) { tree[x].add+=c; tree[x].sum+=c*(tree[x].r-tree[x].l+1); return ; } if(tree[x].add) pushdown(x); LL tmp=x<<1; update(l,r,c,tmp); // !!! update(l,r,c,tmp+1); pushup(x); } void query(LL l,LL r,LL x) { if(r<tree[x].l||l>tree[x].r) //要更新的区间不在该区间上 return ; if(l<=tree[x].l&&r>=tree[x].r) //要更新区间包括了该区间 { ans+=tree[x].sum; return ; } if(tree[x].add) pushdown(x); LL tmp=x<<1; LL mid=(tree[x].l+tree[x].r)>>1; if(r<=mid) query(l,r,tmp); else if(l>mid) query(l,r,tmp+1); else { query(l,mid,tmp); query(mid+1,r,tmp+1); } // pushup(x); } int main() { // freopen("cin.txt","r",stdin); // freopen("cout.txt","w",stdout); while(~scanf("%lld %lld",&n,&m)) { build(1,n,1); char str[5]; while(m--) { scanf("%s",str); if(str[0]=='Q') { LL l,r; scanf("%lld %lld",&l,&r); ans=0; query(l,r,1); printf("%lld\n",ans); } else { LL l,r,c; scanf("%lld %lld %lld",&l,&r,&c); update(l,r,c,1); } } } return 0; }