1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
template< typename T > processpool< T > *processpool< T >::m_instance = NULL; //用于处理信号的管道,以实现统一事件源,后面称之为信号管道 static int sig_pipefd[2];
static int setnonblocking( int fd ) { int old_option = fcntl( fd, F_GETFL ); int new_option = old_option | O_NONBLOCK; fcntl( fd, F_SETFL, new_option ); return old_option; }
static void addfd( int epollfd, int fd ) { epoll_event event; event.data.fd = fd; event.events = EPOLLIN | EPOLLET; epoll_ctl( epollfd, EPOLL_CTL_ADD, fd, &event ); setnonblocking( fd ); } //从epollfd标识的epoll内核事件表中删除fd上的所有注册事件 static void removefd( int epollfd, int fd ) { epoll_ctl( epollfd, EPOLL_CTL_DEL, fd, 0 ); close( fd ); }
static void sig_handler( int sig ) { int save_errno = errno; int msg = sig; send( sig_pipefd[1], ( char * )&msg, 1, 0 ); errno = save_errno; }
static void addsig( int sig, void( handler )(int), bool restart = true ) { struct sigaction sa; memset( &sa, '\0', sizeof( sa ) ); sa.sa_handler = handler; if( restart ) { sa.sa_flags |= SA_RESTART; } sigfillset( &sa.sa_mask ); assert( sigaction( sig, &sa, NULL ) != -1 ); } //进程池构造函数。 //参数listenfd是监听socket,它必须在创建进程池之前被创建,否则 //子进程无法直接引用它,参数process_number指定进程池中子进程的数量。 template< typename T > processpool< T >::processpool( int listenfd, int process_number ) : m_listenfd( listenfd ), m_process_number( process_number ), m_idx( -1 ), m_stop( false ) { assert( ( process_number > 0 ) && ( process_number <= MAX_PROCESS_NUMBER ) );
m_sub_process = new process[ process_number ]; assert( m_sub_process ); //创建process_number个子进程,并建立他们和父进程之间的管道 for( int i = 0; i < process_number; ++i ) { int ret = socketpair( PF_UNIX, SOCK_STREAM, 0, m_sub_process[i].m_pipefd ); assert( ret == 0 );
m_sub_process[i].m_pid = fork(); assert( m_sub_process[i].m_pid >= 0 ); if( m_sub_process[i].m_pid > 0 ) { close( m_sub_process[i].m_pipefd[1] ); continue; } else { close( m_sub_process[i].m_pipefd[0] ); m_idx = i; break; } } } //统一事件源 template< typename T > void processpool< T >::setup_sig_pipe() { //创建epoll事件监听表和信号管道 m_epollfd = epoll_create( 5 ); assert( m_epollfd != -1 );
int ret = socketpair( PF_UNIX, SOCK_STREAM, 0, sig_pipefd ); assert( ret != -1 );
setnonblocking( sig_pipefd[1] ); addfd( m_epollfd, sig_pipefd[0] ); //设置信号处理函数 addsig( SIGCHLD, sig_handler ); addsig( SIGTERM, sig_handler ); addsig( SIGINT, sig_handler ); addsig( SIGPIPE, SIG_IGN ); } //父进程中m_idx值为-1,子进程中m_idx值大于等于0,我们据此判断下来 //要运行的是父进程代码还是子进程代码 template< typename T > void processpool< T >::run() { if( m_idx != -1 ) { run_child(); return; } run_parent(); }
template< typename T > void processpool< T >::run_child() { setup_sig_pipe(); //每个子进程都通过其在进程池中的序号值m_idx找到与父进程通信的管道 int pipefd = m_sub_process[m_idx].m_pipefd[ 1 ]; //子进程需要监听管道文件描述pipefd,因为父进程将通过它来通知子进程 //accept新连接 addfd( m_epollfd, pipefd );
epoll_event events[ MAX_EVENT_NUMBER ]; T *users = new T [ USER_PER_PROCESS ]; assert( users ); int number = 0; int ret = -1;
while( ! m_stop ) { number = epoll_wait( m_epollfd, events, MAX_EVENT_NUMBER, -1 ); if ( ( number < 0 ) && ( errno != EINTR ) ) { printf( "epoll failure\n" ); break; }
for ( int i = 0; i < number; i++ ) { int sockfd = events[i].data.fd; if( ( sockfd == pipefd ) && ( events[i].events & EPOLLIN ) ) {
int client = 0; //从父/子进程之间的管道读取数据,并将结果保存在变量client中。 //如果读取成功,则表示有新的客户连接到来。 ret = recv( sockfd, ( char * )&client, sizeof( client ), 0 ); if( ( ( ret < 0 ) && ( errno != EAGAIN ) ) || ret == 0 ) { continue; } else { struct sockaddr_in client_address; socklen_t client_addrlength = sizeof( client_address ); int connfd = accept( m_listenfd, ( struct sockaddr * )&client_address, &client_addrlength ); if ( connfd < 0 ) { printf( "errno is: %d\n", errno ); continue; } addfd( m_epollfd, connfd ); //模板T必须实现init方法,以初始化一个客户连接 //我们直接使用connfd来索引逻辑处理对象 //T类型的对象,以提高程序效率 users[connfd].init( m_epollfd, connfd, client_address ); } } //下面处理子进程接收到的信号 else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) ) { int sig; char signals[1024]; ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 ); if( ret <= 0 ) { continue; } else { for( int i = 0; i < ret; ++i ) { switch( signals[i] ) { case SIGCHLD: { pid_t pid; int stat; while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 ) { continue; } break; } case SIGTERM: case SIGINT: { m_stop = true; break; } default: { break; } } } } } //如果是其他可读数据,那么必然是客户请求到来。 //调用逻辑对象的process方法处理之 else if( events[i].events & EPOLLIN ) { users[sockfd].process(); } else { continue; } } }
delete [] users; users = NULL; close( pipefd ); //close( m_listenfd ); //我们将这句话注销掉,以提醒读者,应该有m_listenfd的创建者 //来关闭这个文件描述符,即所谓的“对象(比如一个文件描述符,又或者一 //堆内存)由那个函数创建,就应该由那个函数销毁 close( m_epollfd ); }
template< typename T > void processpool< T >::run_parent() { setup_sig_pipe(); //父进程监听m_listenfd addfd( m_epollfd, m_listenfd );
epoll_event events[ MAX_EVENT_NUMBER ]; int sub_process_counter = 0; int new_conn = 1; int number = 0; int ret = -1;
while( ! m_stop ) { number = epoll_wait( m_epollfd, events, MAX_EVENT_NUMBER, -1 ); if ( ( number < 0 ) && ( errno != EINTR ) ) { printf( "epoll failure\n" ); break; }
for ( int i = 0; i < number; i++ ) { int sockfd = events[i].data.fd; if( sockfd == m_listenfd ) { //如果有新连接到来,就采用RR方式将其分配给一个子进程处理 int i = sub_process_counter; do { if( m_sub_process[i].m_pid != -1 ) { break; } i = (i + 1) % m_process_number; } while( i != sub_process_counter );
if( m_sub_process[i].m_pid == -1 ) { m_stop = true; break; } sub_process_counter = (i + 1) % m_process_number; //send( m_sub_process[sub_process_counter++].m_pipefd[0], ( char* )&new_conn, sizeof( new_conn ), 0 ); send( m_sub_process[i].m_pipefd[0], ( char * )&new_conn, sizeof( new_conn ), 0 ); printf( "send request to child %d\n", i ); //sub_process_counter %= m_process_number; } //下面处理父进程接收到的信号 else if( ( sockfd == sig_pipefd[0] ) && ( events[i].events & EPOLLIN ) ) { int sig; char signals[1024]; ret = recv( sig_pipefd[0], signals, sizeof( signals ), 0 ); if( ret <= 0 ) { continue; } else { for( int i = 0; i < ret; ++i ) { //如果进程池中第i个子进程退出了, //则主进程关闭通信管道,并设置相应的m_pid为-1,以标记该子进程已退出 switch( signals[i] ) { case SIGCHLD: { pid_t pid; int stat; while ( ( pid = waitpid( -1, &stat, WNOHANG ) ) > 0 ) { for( int i = 0; i < m_process_number; ++i ) { if( m_sub_process[i].m_pid == pid ) { printf( "child %d join\n", i ); close( m_sub_process[i].m_pipefd[0] ); m_sub_process[i].m_pid = -1; } } } //如果所有子进程都已经退出了,则父进程也退出 m_stop = true; for( int i = 0; i < m_process_number; ++i ) { if( m_sub_process[i].m_pid != -1 ) { m_stop = false; } } break; } case SIGTERM: case SIGINT: { //如果父进程接收到终止信号,那么就杀死所有子进程,并等待它们全部结束,当然, //通知子进程结束更好的方法是向父/子进程之间的通信管道发送特殊数据 printf( "kill all the clild now\n" ); for( int i = 0; i < m_process_number; ++i ) { int pid = m_sub_process[i].m_pid; if( pid != -1 ) { kill( pid, SIGTERM ); } } break; } default: { break; } } } } } else { continue; } } } //由创建者关闭这个文件描述符 //close( m_listenfd ); close( m_epollfd ); } |