(8)七种排序算法的对比

下面我们写一个程序来比较选择排序、插入排序、冒泡排序、合并排序、快速排序、堆排序、基数排序这七种排序算法对同样的整型数组的排序所用的时间。

public class AllSort {

  public static void main(String[] args) {
    System.out.println("Array Size\tSelection Sort\tInsertion Sort"
            + "\tBubble Sort\tMerge Sort\tQuick Sort\tHeap Sort\tRadix Sort");

    int[] list;
    Integer[] list1;   
    Integer[] list2;
    Integer[] list3;
    Integer[] list4;
    Integer[] list5;
    Integer[] list6;
    long startTime;
    long endTime;
    long[][] executionTime = new long[6][7];

    final int BASE = 1000;
    for (int k = 0; k < 6; k++) {
      list=new int[k * BASE + BASE]; 
      for (int i = 0; i < list.length; i++) {
        list[i] = (int)(Math.random() * 100000);
      }
      list1=initList(list);  
      list2=initList(list);  
      list3=initList(list);  
      list4=initList(list);  
      list5=initList(list);  
      list6=initList(list);        

      startTime = System.currentTimeMillis();
      selectionSort(list1);
      endTime = System.currentTimeMillis();
      executionTime[k][0] = endTime - startTime;

      startTime = System.currentTimeMillis();
      insertionSort(list2);
      endTime = System.currentTimeMillis();
      executionTime[k][1] = endTime - startTime;

      startTime = System.currentTimeMillis();
      bubbleSort(list3);
      endTime = System.currentTimeMillis();
      executionTime[k][2] = endTime - startTime;

      //print(list4);
      startTime = System.currentTimeMillis();
      mergeSort(list4);
      endTime = System.currentTimeMillis();
      executionTime[k][3] = endTime - startTime;
      //print(list4);

      startTime = System.currentTimeMillis();
      quickSort(list5);
      endTime = System.currentTimeMillis();
      executionTime[k][4] = endTime - startTime;     

      startTime = System.currentTimeMillis();
      heapSort(list6);
      endTime = System.currentTimeMillis();
      executionTime[k][5] = endTime - startTime;

      startTime = System.currentTimeMillis();
      radixSort(list, 5);
      endTime = System.currentTimeMillis();
      executionTime[k][6] = endTime - startTime;
    }

    for (int i = 0; i < 6; i++) {
        System.out.print(BASE + i * BASE + " ");
        for (int j = 0; j < 7; j++)
            System.out.print("\t\t" + executionTime[i][j]);
        System.out.println();
    }
  }

  public static void print(Integer[] list){
      int len=list.length;
      for(int i=0;i" ");
      System.out.println();            
  }

  public static Integer[] initList(int[] array){
      int len=array.length;
      Integer[] list=new Integer[len];
      for(int i=0;ireturn list;
  }

    /** The method for sorting the numbers */
    public static > void selectionSort(E[] list) {
        for (int i = list.length - 1; i >= 1; i--) {
          // Find the maximum in the list[0..i]
          E currentMax = list[0];
          int currentMaxIndex = 0;

          for (int j = 1; j <= i; j++) {
            if (currentMax.compareTo(list[j]) < 0) {
              currentMax = list[j];
              currentMaxIndex = j;
            }
          }

          // Swap list[i] with list[currentMaxIndex] if necessary;
          if (currentMaxIndex != i) {
            list[currentMaxIndex] = list[i];
            list[i] = currentMax;
          }
        }
    }

  /** The method for sorting the numbers */
  public static > void insertionSort(E[] list) {
    for (int i = 1; i < list.length; i++) {
        /** insert list[i] into a sorted sublist list[0..i-1] so that list[0..i] is sorted. */
        E currentElement = list[i];
        int k;
        for (k = i - 1; k >= 0 && list[k].compareTo(currentElement) > 0; k--) {
          list[k + 1] = list[k];
        }

        // Insert the current element into list[k+1]
        list[k + 1] = currentElement;
      }
    }

  /** The method for sorting the numbers */
  public static > void bubbleSort(E[] list) {
        boolean needNextPass = true;
        for (int k = 1; k < list.length && needNextPass; k++) {
            // Array may be sorted and next pass not needed
            needNextPass = false;
            for (int i = 0; i < list.length - k; i++) {
                if (list[i].compareTo(list[i + 1]) > 0) {
                    // Swap list[i] with list[i + 1]
                    E temp = list[i];
                    list[i] = list[i + 1];
                    list[i + 1] = temp;
                    needNextPass = true; // Next pass still needed
                }
            }
        }
    }

    /** The method for sorting the numbers */
    public static > void mergeSort(E[] list) {
        if (list.length > 1) {
          // Merge sort the first half
          E[] firstHalf = (E[])new Comparable[list.length / 2];
          System.arraycopy(list, 0, firstHalf, 0, list.length / 2);
          mergeSort(firstHalf);

          // Merge sort the second half
          int secondHalfLength = list.length - list.length / 2;
          E[] secondHalf = (E[])new Comparable[secondHalfLength];
          System.arraycopy(list, list.length / 2,
                           secondHalf, 0, secondHalfLength);
          mergeSort(secondHalf);

          // Merge firstHalf with secondHalf
          E[] temp = merge(firstHalf, secondHalf);
          System.arraycopy(temp, 0, list, 0, temp.length);
        }
    }

    private static> E[] merge(E[] list1, E[] list2) {
        E[] temp = (E[])new Comparable[list1.length + list2.length];

        int current1 = 0; // Index in list1
        int current2 = 0; // Index in list2
        int current3 = 0; // Index in temp

        while (current1 < list1.length && current2 < list2.length) {
          if (list1[current1].compareTo(list2[current2]) < 0) {
            temp[current3++] = list1[current1++];
          }
          else {
            temp[current3++] = list2[current2++];
          }
        }

        while (current1 < list1.length) {
          temp[current3++] = list1[current1++];
        }

        while (current2 < list2.length) {
          temp[current3++] = list2[current2++];
        }

        return temp;
    }

  public static>void quickSort(E[] list) {
    quickSort(list, 0, list.length - 1);
  }

  private static>void quickSort(E[] list, int first, int last) {
    if (last > first) {
      int pivotIndex = partition(list, first, last);
      quickSort(list, first, pivotIndex - 1);
      quickSort(list, pivotIndex + 1, last);
    }
  }

  /** Partition the array list[first..last] */
  private static>int partition(E[] list, int first, int last) {
    E pivot = list[first]; // Choose the first element as the pivot
    int low = first + 1; // Index for forward search
    int high = last; // Index for backward search

    while (high > low) {
      // Search forward from left
      while (low <= high && list[low].compareTo(pivot) <= 0) {
        low++;
      }

      // Search backward from right
      while (low <= high && list[high].compareTo(pivot) > 0) {
        high--;
      }

      // Swap two elements in the list
      if (high > low) {
        E temp = list[high];
        list[high] = list[low];
        list[low] = temp;
      }
    }

    while (high > first && list[high].compareTo(pivot) >= 0) {
      high--;
    }

    // Swap pivot with list[high]
    if (pivot.compareTo(list[high]) > 0) {
      list[first] = list[high];
      list[high] = pivot;
      return high;
    }
    else {
      return first;
    }
  }

  public static>void heapSort(E[] list) {
    Heap heap = new Heap(); // Create a Heap

    // Add elements to the heap
    for (int i = 0; i < list.length; i++) {
      heap.add(list[i]);
    }

    // Remove elements from the heap
    for (int i = list.length - 1; i >= 0; i--) {
      list[i] = heap.remove();
    }
  }

  /** Sort the int array list. numberOfDigits is the number of digits * in the largest number in the array */
  public static void radixSort(int[] list, int numberOfDigits) {
    java.util.ArrayList[] buckets = new java.util.ArrayList[10];
    for (int i = 0; i < buckets.length; i++) {
      buckets[i] = new java.util.ArrayList();
    }

    for (int position = 0; position <= numberOfDigits; position++) {
      // Clear buckets
      for (int i = 0; i < buckets.length; i++) {
        buckets[i].clear();
      }      

      // Distribute the elements from list to buckets
      for (int i = 0; i < list.length; i++) {
        int key = getKey(list[i], position);
        buckets[key].add(list[i]);
      }

      // Now move the elements from the buckets back to list
      int k = 0; // k is an index for list
      for (int i = 0; i < buckets.length; i++) {
        if (buckets[i] != null) {
          for (int j = 0; j < buckets[i].size(); j++)
            list[k++] = buckets[i].get(j);
        }
      }
    }
  }

  /** Return the digit at the specified position. * The last digit's position is 0. */
  public static int getKey(int number, int position) {
    int result = 1;
    for (int i = 0; i < position; i++)
      result *= 10;

    return (number / result) % 10;
  }

  static class Heap > {
    java.util.ArrayList list = new java.util.ArrayList();

    /** Create a default heap */
    public Heap() {
    }

    /** Create a heap from an array of objects */
    public Heap(E[] objects) {
      for (int i = 0; i < objects.length; i++) {
        add(objects[i]);
      }
    }

    /** Add a new object into the heap */
    public void add(E newObject) {
      list.add(newObject); // Append to the heap
      int currentIndex = list.size() - 1; // The index of the last node

      while (currentIndex > 0) {
        int parentIndex = (currentIndex - 1) / 2;
        // Swap if the current object is greater than its parent
        if (list.get(currentIndex).compareTo(list.get(parentIndex)) > 0) {
        //最小堆
        //if (list.get(currentIndex).compareTo(list.get(parentIndex)) < 0) { 
          E temp = list.get(currentIndex);
          list.set(currentIndex, list.get(parentIndex));
          list.set(parentIndex, temp);
        }
        else {
          break; // the tree is a heap now
        }

        currentIndex = parentIndex;
      }
    }

    /** Remove the root from the heap */
    public E remove() {
      if (list.size() == 0) {
        return null;
      }

      E removedObject = list.get(0);
      list.set(0, list.get(list.size() - 1));
      list.remove(list.size() - 1);

      int currentIndex = 0;
      while (currentIndex < list.size()) {
        int leftChildIndex = 2 * currentIndex + 1;
        int rightChildIndex = 2 * currentIndex + 2;

        // Find the maximum between two children
        if (leftChildIndex >= list.size()) {
          break; // The tree is a heap
        }
        int maxIndex = leftChildIndex;
        if (rightChildIndex < list.size()) {
          if (((Comparable)(list.get(maxIndex))).compareTo(
            list.get(rightChildIndex)) < 0) {//>0
            maxIndex = rightChildIndex;
          }
        }

        // Swap if the current node is less than the maximum
        if (((Comparable)(list.get(currentIndex))).compareTo(
          list.get(maxIndex)) < 0) {//>0
          E temp = list.get(maxIndex);
          list.set(maxIndex, list.get(currentIndex));
          list.set(currentIndex, temp);
          currentIndex = maxIndex;
        }
        else {
          break; // The tree is a heap
        }
      }

      return removedObject;
    }

    /** Get the number of nodes in the tree */
    public int getSize() {
      return list.size();
    }
  }

}

结果如下:
(8)七种排序算法的对比_第1张图片

你可能感兴趣的:(算法)