在P2P通信标准协议(二)中,介绍了TURN的基本交互流程,在上篇结束部分也有说到,TURN作为STUN
协议的一个拓展,保持了STUN的工具性质,而不作为完整的NAT传输解决方案,只提供穿透NAT的功能,
并且由具体的应用程序来使用.虽然TURN也可以独立工作,但其本身就是被设计为ICE/RFC5245
的一部分,本章就来介绍一下ICE协议的具体内容.
ICE信息的描述格式通常采用标准的SDP,其全称为Session Description Protocol,即会话描述协议.
SDP只是一种信息格式的描述标准,不属于传输协议,但是可以被其他传输协议用来交换必要的信息,如SIP和RTSP等.
一个SDP会话描述包含如下部分:
因为在中途参与会话也许会受限制,所以可能会需要一些额外的信息:
一般来说,SDP必须包含充分的信息使得应用程序能够加入会话,并且可以提供任何非参与者使用时需要知道的资源
状况,后者在当SDP同时用于多个会话声明协议时尤其有用.
SDP是基于文本的协议,使用ISO 10646字符集和UTF-8编码.SDP字段名称和属性名称只使用UTF-8的一个子集US-ASCII,
因此不能存在中文.虽然理论上文本字段和属性字段支持全集,但最好还是不要在其中使用中文.
SDP会话描述包含了多行如下类型的文本:
<type>=<value>
其中type是大小写敏感的,其中一些行是必须要有的,有些是可选的,所有元素都必须以固定顺序给出.固定的顺序极大改善了
错误检测,同时使得处理端设计更加简单.如下所示,其中可选的元素标记为* :
会话描述:
v= (protocol version)
o= (originator and session identifier)
s= (session name)
i=* (session information)
u=* (URI of description)
e=* (email address)
p=* (phone number)
c=* (connection information -- not required if included in
all media)
b=* (zero or more bandwidth information lines)
One or more time descriptions ("t=" and "r=" lines; see below)
z=* (time zone adjustments)
k=* (encryption key)
a=* (zero or more session attribute lines)
Zero or more media descriptions
时间信息描述:
t= (time the session is active)
r=* (zero or more repeat times)
多媒体信息描述(如果有的话):
m= (media name and transport address)
i=* (media title)
c=* (connection information -- optional if included at
session level)
b=* (zero or more bandwidth information lines)
k=* (encryption key)
a=* (zero or more media attribute lines)
所有元素的type都为小写,并且不提供拓展.但是我们可以用a(attribute)字段来提供额外的信息.一个SDP描述的例子如下:
v=0
o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.example.com/seminars/sdp.pdf
[email protected] (Jane Doe)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 99
a=rtpmap:99 h263-1998/90000
具体字段的type/value描述和格式可以去参考RFC4566.
上文说到,SDP用来描述多播主干网络的会话信息,但是并没有具体的交互操作细节是如何实现的,因此RFC3264
定义了一种基于SDP的offer/answer模型.在该模型中,会话参与者的其中一方生成一个SDP报文构成offer,
其中包含了一组offerer希望使用的多媒体流和编解码方法,以及offerer用来接收改数据的IP地址和端口信息.
offer传输到会话的另一端(称为answerer),由answerer生成一个answer,即用来响应对应offer的SDP报文.
answer中包含不同offer对应的多媒体流,并指明该流是否可以接受.
RFC3264只介绍了交换数据过程,而没有定义传递offer/answer报文的方法,后者在RFC3261/SIP
即会话初始化协议中描述.值得一提的是,offer/answer模型也经常被SIP作为一种基本方法使用.
offer/answer模型在SDP报文的基础上进行了一些定义,工作过程不在此描述,需要了解细节的朋友可以参考RFC3261.
ICE的全称为Interactive Connectivity Establishment,即交互式连接建立.初学者可能会将其与网络编程的ICE
弄混,其实那是不一样的东西,在网络编程中,如C++的ICE库,都是指Internate Communications Engine,
是一种用于分布式程序设计的网络通信中间件.我们这里说的只是交互式连接建立.
ICE是一个用于在offer/answer模式下的NAT传输协议,主要用于UDP下多媒体会话的建立,其使用了STUN协议以及TURN
协议,同时也能被其他实现了offer/answer模型的的其他程序所使用,比如SIP(Session Initiation Protocol).
使用offer/answer模型(RFC3264)的协议通常很难在NAT之间穿透,因为其目的一般是建立多媒体数据流,而且在报文中还
携带了数据的源IP和端口信息,这在通过NAT时是有问题的.RFC3264还尝试在客户端之间建立直接的通路,因此中间就缺少
了应用层的封装.这样设计是为了减少媒体数据延迟,减少丢包率以及减少程序部署的负担.然而这一切都很难通过NAT而完成.
有很多解决方案可以使得这些协议运行于NAT环境之中,包括应用层网关(ALGs)
,Classic STUN
以及Realm Specific IP
+SDP
协同工作等方法.不幸的是,这些技术都是在某些网络拓扑下工作很好,而在另一些环境下表现又很差,因此我们需要一个单一的,
可自由定制的解决方案,以便能在所有环境中都能较好工作.
一个典型的ICE工作环境如下,有两个端点L和R,都运行在各自的NAT之后(他们自己也许并不知道),NAT的类型和性质也是未知的.
L和R通过交换SDP信息在彼此之间建立多媒体会话,通常交换通过一个SIP服务器完成:
+-----------+
| SIP |
+-------+ | Srvr | +-------+
| STUN | | | | STUN |
| Srvr | +-----------+ | Srvr |
| | / \ | |
+-------+ / \ +-------+
/<- Signaling ->\
/ \
+--------+ +--------+
| NAT | | NAT |
+--------+ +--------+
/ \
/ \
/ \
+-------+ +-------+
| Agent | | Agent |
| L | | R |
| | | |
+-------+ +-------+
ICE的基本思路是,每个终端都有一系列传输地址
(包括传输协议,IP地址和端口)的候选,可以用来和其他端点进行通信.
其中可能包括:
虽然潜在要求任意一个L的候选地址都能用来和R的候选地址进行通信.但是实际中发现有许多组合是无法工作的.举例来说,
如果L和R都在NAT之后而且不处于同一内网,他们的直接地址就无法进行通信.ICE的目的就是为了发现哪一对候选地址的
组合可以工作,并且通过系统的方法对所有组合进行测试(用一种精心挑选的顺序).
为了执行ICE,客户端必须要识别出其所有的地址候选,ICE中定义了三种候选类型,有些是从物理地址或者逻辑网络接口继承
而来,其他则是从STUN或者TURN服务器发现的.很自然,一个可用的地址为和本地网络接口直接联系的地址,通常是内网地址,
称为HOST CANDIDATE
,如果客户端有多个网络接口,比如既连接了WiFi又插着网线,那么就可能有多个内网地址候选.
其次,客户端通过STUN或者TURN来获得更多的候选传输地址,即SERVER REFLEXIVE CANDIDATES
和RELAYED CANDIDATES
,
如果TURN服务器是标准化的,那么两种地址都可以通过TURN服务器获得.当L获得所有的自己的候选地址之后,会将其
按优先级排序,然后通过signaling通道发送到R.候选地址被存储在SDP offer报文的属性部分.当R接收到offer之后,
就会进行同样的获选地址收集过程,并返回给L.
这一步骤之后,两个对等端都拥有了若干自己和对方的候选地址,并将其配对,组成CANDIDATE PAIRS
.为了查看哪对组合
可以工作,每个终端都进行一系列的检查.每个检查都是一次STUN request/response传输,将request从候选地址对的本地
地址发送到远端地址. 连接性检查的基本原则很简单:
两端连接性测试,结果是一个4次握手过程:
L R
- -
STUN request -> \ L's
<- STUN response / check
<- STUN request \ R's
STUN response -> / check
值的一提的是,STUN request的发送和接收地址都是接下来进多媒体传输(如RTP和RTCP)的地址和端口,所以,
客户端实际上是将STUN协议与RTP/RTCP协议在数据包中进行复用(而不是在端口上复用).
由于STUN Binding request用来进行连接性测试,因此STUN Binding response中会包含终端的实际地址,
如果这个地址和之前学习的所有地址都不匹配,发送方就会生成一个新的candidate,称为PEER REFLEXIVE CANDIDATE
,
和其他candidate一样,也要通过ICE的检查测试.
所有的ICE实现都要求与STUN(RFC5389)兼容,并且废弃Classic STUN(RFC3489).ICE的完整实现既生成checks(作为STUN client),
也接收checks(作为STUN server),而lite实现则只负责接收checks.这里只介绍完整实现情况下的检查过程.
1. 为中继候选地址生成许可(Permissions).
2. 从本地候选往远端候选发送Binding Request.
在Binding请求中通常需要包含一些特殊的属性,以在ICE进行连接性检查的时候提供必要信息.
3. 处理Response.
当收到Binding Response时,终端会将其与Binding Request相联系,通常通过事务ID.随后将会将此事务ID与
候选地址对进行绑定.
Waiting
. 终端收到成功响应之后,先检查其mapped address是否与本地记录的地址对有匹配,如果没有则生成一个新的候选地址.
即对等端的反射地址.如果有匹配,则终端会构造一个可用候选地址对(valid pair).通常很可能地址对不存在于任何
检查列表中,检索检查列表中没有被服务器反射的本地地址,这些地址把它们的本地候选转换成服务器反射地址的基地址,
并把冗余的地址去除掉.
本文介绍了一种完整的NAT环境通信解决方案ICE,并且对其中涉及到的概念SDP和offer/answer模型也作了简要介绍.
ICE是使用STUN/TURN工具性质的最主要协议之一,其中TURN一开始也被设计为ICE协议的一部分.值的一提的是,
本文只是对这几种协议作了概述性的说明,而具体工作过程和详细的属性描述都未包含,因此如果需要根据协议来
实现具体的应用程序,还需要对RFC的文档进行仔细阅读.这里给出一些参考:
而具体的代码以及实现可以参考:
博客新址: pppan.tk
文章欢迎转载,但请注明出处