PaddlePaddle | 深度学习 101- 词向量

本人仅以 PaddlePaddle 深度学习 101 官网教程为指导,添加个人理解和笔记,仅作为学习练习使用,若有错误,还望批评指教。–ZJ

原文地址: PaddlePaddle 官网| PaddlePaddle 深度学习 101

环境:
- Python 2.7
- Ubuntu 16.04

词向量

本教程源代码目录在book/word2vec, 初次使用请参考PaddlePaddle安装教程,更多内容请参考本教程的视频课堂。

背景介绍

本章我们介绍词的向量表征,也称为 word embedding

  • 词向量是自然语言处理中常见的一个操作,是搜索引擎、广告系统、推荐系统等互联网服务背后常见的基础技术

在这些互联网服务里,我们经常要比较两个词或者两段文本之间的相关性。为了做这样的比较,我们往往先要把词表示成计算机适合处理的方式。

  • 最自然的方式恐怕莫过于向量空间模型(vector space model)。
  • 在这种方式里,每个词被表示成一个实数向量(one-hot vector),其长度为字典大小,每个维度对应一个字典里的每个词,除了这个词对应维度上的值是 1,其他元素都是 0。

One-hot vector虽然自然,但是用处有限。

比如,在互联网广告系统里,如果用户输入的 query 是“母亲节”,而有一个广告的关键词是“康乃馨”。
虽然按照常理,我们知道这两个词之间是有联系的——母亲节通常应该送给母亲一束康乃馨;
但是这两个词对应的one-hot vectors之间的距离度量,无论是欧氏距离还是余弦相似度(cosine similarity),由于其向量正交,都认为这两个词毫无相关性。

  • 得出这种与我们相悖的结论的根本原因是:每个词本身的信息量都太小。所以,仅仅给定两个词,不足以让我们准确判别它们是否相关。要想精确计算相关性,我们还需要更多的信息——从大量数据里通过机器学习方法归纳出来的知识。

在机器学习领域里,各种“知识”被各种模型表示,词向量模型(word embedding model) 就是其中的一类。通过词向量模型可将一个 one-hot vector 映射到一个维度更低的实数向量(embedding vector),

embedding()=[0.3,4.2,1.5,...],embedding()=[0.2,5.6,2.3,...] e m b e d d i n g ( 母 亲 节 ) = [ 0.3 , 4.2 , − 1.5 , . . . ] , e m b e d d i n g ( 康 乃 馨 ) = [ 0.2 , 5.6 , − 2.3 , . . . ]

在这个映射到的实数向量表示中,希望两个语义(或用法)上相似的词对应的词向量“更像”,这样如“母亲节”和“康乃馨”的对应词向量的余弦相似度就不再为零了。

词向量模型可以是概率模型、共生矩阵 (co-occurrence matrix) 模型或神经元网络模型。

在用神经网络求词向量之前,传统做法是统计一个词语的共生矩阵 X X X X 是一个 |V|×|V| | V | × | V | 大小的矩阵, Xij X i j 表示在所有语料中,词汇表V(vocabulary)中第 i 个词和第 j 个词同时出现的词数, |V| | V | 为词汇表的大小。对 X X 做矩阵分解(如奇异值分解,Singular Value Decomposition [5]),得到的 U U 即视为所有词的词向量:

X=USVT X = U S V T

但这样的传统做法有很多问题:

1) 由于很多词没有出现,导致矩阵极其稀疏,因此需要对词频做额外处理来达到好的矩阵分解效果;

2) 矩阵非常大,维度太高(通常达到 106106 10 6 ∗ 10 6 的数量级);

3) 需要手动去掉停用词(如 although, a,…),不然这些频繁出现的词也会影响矩阵分解的效果。

基于神经网络的模型不需要计算存储一个在全语料上统计的大表,而是通过学习语义信息得到词向量,因此能很好地解决以上问题。在本章里,我们将展示基于神经网络训练词向量的细节,以及如何用 PaddlePaddle 训练一个词向量模型。

效果展示

本章中,当词向量训练好后,我们可以用数据可视化算法 t-SNE[4]画出词语特征在二维上的投影(如下图所示)。从图中可以看出,语义相关的词语(如a, the, these; big, huge)在投影上距离很近,语意无关的词(如 say, business; decision, japan)在投影上的距离很远。


PaddlePaddle | 深度学习 101- 词向量_第1张图片
图1. 词向量的二维投影

另一方面,我们知道两个向量的余弦值在 [1,1] [ − 1 , 1 ] 的区间内:

  • 两个完全相同的向量余弦值为 1,
  • 两个相互垂直的向量之间余弦值为 0,
  • 两个方向完全相反的向量余弦值为 -1,
  • 即相关性和余弦值大小成正比。因此我们还可以计算两个词向量的余弦相似度:
similarity: 0.899180685161
please input two words: big huge

please input two words: from company
similarity: -0.0997506977351
以上结果可以通过运行`calculate_dis.py`, 加载字典里的单词和对应训练特征结果得到,我们将在[应用模型](#应用模型)中详细描述用法。 ## 模型概览 在这里我们介绍三个训练词向量的模型:N-gram 模型,CBOW 模型和 Skip-gram 模型,它们的中心思想都是通过上下文得到一个词出现的概率。对于 N-gram 模型,我们会先介绍语言模型的概念,并在之后的[训练模型](#训练模型)中,带大家用 PaddlePaddle 实现它。而后两个模型,是近年来最有名的神经元词向量模型,由 Tomas Mikolov 在 Google 研发
[3](#参考文献) [3](#参考文献)
,虽然它们很浅很简单,但训练效果很好。 ### 语言模型 在介绍词向量模型之前,我们先来引入一个概念:**语言模型。** 语言模型旨在为语句的联合概率函数 P(w1,...,wT) P ( w 1 , . . . , w T ) 建模, 其中 wi w i 表示句子中的第 i个词。语言模型的目标是,希望模型对有意义的句子赋予大概率,对没意义的句子赋予小概率。 这样的模型可以应用于很多领域,如机器翻译、语音识别、信息检索、词性标注、手写识别等,它们都希望能得到一个连续序列的概率。 以信息检索为例,当你在搜索 “how long is a football bame” 时( bame 是一个医学名词),搜索引擎会提示你是否希望搜索 “how long is a football game”, 这是因为根据语言模型计算出“how long is a football bame”的概率很低,而与 bame 近似的,可能引起错误的词中,game 会使该句生成的概率最大。 对语言模型的目标概率 P(w1,...,wT) P ( w 1 , . . . , w T ) ,如果假设文本中每个词都是相互独立的,则整句话的联合概率可以表示为其中所有词语条件概率的乘积,即:
P(w1,...,wT)=t=1TP(wt) P ( w 1 , . . . , w T ) = ∏ t = 1 T P ( w t )
然而我们知道语句中的每个词出现的概率都与其前面的词紧密相关, 所以实际上通常用条件概率表示语言模型:
P(w1,...,wT)=t=1TP(wt|w1,...,wt1) P ( w 1 , . . . , w T ) = ∏ t = 1 T P ( w t | w 1 , . . . , w t − 1 )
### N-gram neural model 在计算语言学中,n-gram 是一种重要的文本表示方法,表示一个文本中连续的 n 个项。基于具体的应用场景,每一项可以是一个字母、单词或者音节。 n-gram 模型也是统计语言模型中的一种重要方法,用 n-gram 训练语言模型时,一般用每个 n-gram 的历史 n-1 个词语组成的内容来预测第 n 个词。 Yoshua Bengio 等科学家就于 2003 年在著名论文 Neural Probabilistic Language Models
[1](#参考文献) [1](#参考文献)
中介绍如何学习一个神经元网络表示的词向量模型。 - 文中的神经概率语言模型(Neural Network Language Model,NNLM)通过一个线性映射和一个非线性隐层连接,同时学习了语言模型和词向量,即通过学习大量语料得到词语的向量表达,通过这些向量得到整个句子的概率。 - 用这种方法学习语言模型可以克服维度灾难(curse of dimensionality),即训练和测试数据不同导致的模型不准。注意:由于“神经概率语言模型”说法较为泛泛,我们在这里不用其 NNLM 的本名,考虑到其具体做法,本文中称该模型为 N-gram neural model。 我们在上文中已经讲到用条件概率建模语言模型,即一句话中第 t t 个词的概率和该句话的前 t1 t − 1 个词相关。可实际上越远的词语其实对该词的影响越小,那么如果考虑一个 n-gram, 每个词都只受其前面`n-1`个词的影响,则有:
P(w1,...,wT)=t=nTP(wt|wt1,wt2,...,wtn+1) P ( w 1 , . . . , w T ) = ∏ t = n T P ( w t | w t − 1 , w t − 2 , . . . , w t − n + 1 )
给定一些真实语料,这些语料中都是有意义的句子,N-gram 模型的优化目标则是最大化目标函数:
1Ttf(wt,wt1,...,wtn+1;θ)+R(θ) 1 T ∑ t f ( w t , w t − 1 , . . . , w t − n + 1 ; θ ) + R ( θ )
其中 f(wt,wt1,...,wtn+1) f ( w t , w t − 1 , . . . , w t − n + 1 ) 表示根据历史 n-1 个词得到当前词 wt w t 的条件概率, R(θ) R ( θ ) 表示参数正则项。 ![这里写图片描述](https://img-blog.csdn.net/2018041910154820?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pVTkpVTl9aSEFP/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) 图2. N-gram神经网络模型 图2展示了 N-gram 神经网络模型,从下往上看,该模型分为以下几个部分: - 对于每个样本,模型输入 wtn+1,...wt1 w t − n + 1 , . . . w t − 1 , 输出句子第 t 个词为字典中`|V|`个词的概率。 每个输入词 wtn+1,...wt1 w t − n + 1 , . . . w t − 1 首先通过映射矩阵映射到词向量 C(wtn+1),...C(wt1) C ( w t − n + 1 ) , . . . C ( w t − 1 ) 。 - 然后所有词语的词向量连接成一个大向量,并经过一个非线性映射得到历史词语的隐层表示:
g=Utanh(θTx+b1)+Wx+b2 g = U t a n h ( θ T x + b 1 ) + W x + b 2
其中, x x 为所有词语的词向量连接成的大向量,表示文本历史特征; θ θ U U b1 b 1 b2 b 2 W W 分别为词向量层到隐层连接的参数。 g g 表示未经归一化的所有输出单词概率, gi g i 表示未经归一化的字典中第 i i 个单词的输出概率。 - 根据 softmax 的定义,通过归一化 gi g i , 生成目标词 wt w t 的概率为:
P(wt|w1,...,wtn+1)=egwt|V|iegi P ( w t | w 1 , . . . , w t − n + 1 ) = e g w t ∑ i | V | e g i
- 整个网络的损失值(cost)为多类分类交叉熵,用公式表示为
J(θ)=i=1Nc=1|V|yiklog(softmax(gik)) J ( θ ) = − ∑ i = 1 N ∑ c = 1 | V | y k i l o g ( s o f t m a x ( g k i ) )
其中 yik y k i 表示第 i i 个样本第 k k 类的真实标签(0或1), softmax(gik) s o f t m a x ( g k i ) 表示第 i 个样本第k类softmax输出的概率。 ### Continuous Bag-of-Words model(CBOW) CBOW 模型通过一个词的上下文(各 N 个词)预测当前词。当 N=2 时,模型如下图所示: ![这里写图片描述](https://img-blog.csdn.net/20180419101614981?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pVTkpVTl9aSEFP/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) 图3. CBOW模型 具体来说,不考虑上下文的词语输入顺序,CBOW 是用上下文词语的词向量的均值来预测当前词。即:
context=xt1+xt2+xt+1+xt+24 c o n t e x t = x t − 1 + x t − 2 + x t + 1 + x t + 2 4
其中 xt x t 为第 t t 个词的词向量,分类分数(score)向量 z=Ucontext z = U ∗ c o n t e x t ,最终的分类 y y 采用 softmax,损失函数采用多类分类交叉熵。 ### Skip-gram model CBOW 的好处是对上下文词语的分布在词向量上进行了平滑,去掉了噪声,因此在小数据集上很有效。而 Skip-gram 的方法中,用一个词预测其上下文,得到了当前词上下文的很多样本,因此可用于更大的数据集。 ![这里写图片描述](https://img-blog.csdn.net/20180419101718542?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pVTkpVTl9aSEFP/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) 图4. Skip-gram模型 如上图所示,Skip-gram 模型的具体做法是,将一个词的词向量映射到 2n 2 n 个词的词向量( 2n 2 n 表示当前输入词的前后各 n n 个词),然后分别通过 softmax 得到这 2n 2 n 个词的分类损失值之和。 ## 数据准备 ### 数据介绍 本教程使用 Penn Treebank (PTB)(经 Tomas Mikolov 预处理过的版本)数据集。PTB 数据集较小,训练速度快,应用于 Mikolov 的公开语言模型训练工具
[2](#参考文献) [2](#参考文献)
中。其统计情况如下:

训练数据 验证数据 测试数据
ptb.train.txt ptb.valid.txt ptb.test.txt
42068句 3370句 3761句

数据预处理

本章训练的是 5-gram 模型,表示在 PaddlePaddle 训练时,每条数据的前 4 个词用来预测第 5个词。PaddlePaddle 提供了对应PTB数据集的 python 包paddle.dataset.imikolov,自动做数据的下载与预处理,方便大家使用。

预处理会把数据集中的每一句话前后加上开始符号以及结束符号。然后依据窗口大小(本教程中为 5),从头到尾每次向右滑动窗口并生成一条数据。

如”I have a dream that one day” 一句提供了5条数据:

 I have a dream
I have a dream that
have a dream that one
a dream that one day
dream that one day 

最后,每个输入会按其单词次在字典里的位置,转化成整数的索引序列,作为 PaddlePaddle 的输入。

编程实现

本配置的模型结构如下图所示:


PaddlePaddle | 深度学习 101- 词向量_第2张图片
图5. 模型配置中的N-gram神经网络模型

首先,加载所需要的包:

import math
import paddle.v2 as paddle

然后,定义参数:

embsize = 32 # 词向量维度
hiddensize = 256 # 隐层维度
N = 5 # 训练5-Gram

用于保存和加载word_dict和embedding table的函数

# save and load word dict and embedding table
def save_dict_and_embedding(word_dict, embeddings):
    with open("word_dict", "w") as f:
        for key in word_dict:
            f.write(key + " " + str(word_dict[key]) + "\n")
    with open("embedding_table", "w") as f:
        numpy.savetxt(f, embeddings, delimiter=',', newline='\n')


def load_dict_and_embedding():
    word_dict = dict()
    with open("word_dict", "r") as f:
        for line in f:
            key, value = line.strip().split(" ")
            word_dict[key] = int(value)

    embeddings = numpy.loadtxt("embedding_table", delimiter=",")
    return word_dict, embeddings

接着,定义网络结构:

  • wt w t 之前的 n1 n − 1 个词 wtn+1,...wt1 w t − n + 1 , . . . w t − 1 ,通过 |V|×D | V | × D 的矩阵映射到D维词向量(本例中取D=32)。
def wordemb(inlayer):
    wordemb = paddle.layer.table_projection(
        input=inlayer,
        size=embsize,
        param_attr=paddle.attr.Param(
            name="_proj",
            initial_std=0.001,
            learning_rate=1,
            l2_rate=0,
            sparse_update=True))
    return wordemb
  • 定义输入层接受的数据类型以及名字。
paddle.init(use_gpu=False, trainer_count=3) # 初始化PaddlePaddle
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
# 每个输入层都接受整形数据,这些数据的范围是[0, dict_size)
firstword = paddle.layer.data(
    name="firstw", type=paddle.data_type.integer_value(dict_size))
secondword = paddle.layer.data(
    name="secondw", type=paddle.data_type.integer_value(dict_size))
thirdword = paddle.layer.data(
    name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourthword = paddle.layer.data(
    name="fourthw", type=paddle.data_type.integer_value(dict_size))
nextword = paddle.layer.data(
    name="fifthw", type=paddle.data_type.integer_value(dict_size))

Efirst = wordemb(firstword)
Esecond = wordemb(secondword)
Ethird = wordemb(thirdword)
Efourth = wordemb(fourthword)
  • 将这n-1个词向量经过concat_layer连接成一个大向量作为历史文本特征。
contextemb = paddle.layer.concat(input=[Efirst, Esecond, Ethird, Efourth])
  • 将历史文本特征经过一个全连接得到文本隐层特征。
hidden1 = paddle.layer.fc(input=contextemb,
                          size=hiddensize,
                          act=paddle.activation.Sigmoid(),
                          layer_attr=paddle.attr.Extra(drop_rate=0.5),
                          bias_attr=paddle.attr.Param(learning_rate=2),
                          param_attr=paddle.attr.Param(
                                initial_std=1. / math.sqrt(embsize * 8),
                                learning_rate=1))
  • 将文本隐层特征,再经过一个全连接,映射成一个 |V| | V | 维向量,同时通过softmax归一化得到这|V|个词的生成概率。
predictword = paddle.layer.fc(input=hidden1,
                              size=dict_size,
                              bias_attr=paddle.attr.Param(learning_rate=2),
                              act=paddle.activation.Softmax())
  • 网络的损失函数为多分类交叉熵,可直接调用classification_cost函数。
cost = paddle.layer.classification_cost(input=predictword, label=nextword)

然后,指定训练相关的参数:

  • 训练方法(optimizer): 代表训练过程在更新权重时采用动量优化器,本教程使用Adam优化器。
  • 训练速度(learning_rate): 迭代的速度,与网络的训练收敛速度有关系。
  • 正则化(regularization): 是防止网络过拟合的一种手段,此处采用L2正则化。
parameters = paddle.parameters.create(cost)
adagrad = paddle.optimizer.AdaGrad(
    learning_rate=3e-3,
    regularization=paddle.optimizer.L2Regularization(8e-4))
trainer = paddle.trainer.SGD(cost, parameters, adagrad)

下一步,我们开始训练过程。paddle.dataset.imikolov.train()paddle.dataset.imikolov.test()分别做训练和测试数据集。这两个函数各自返回一个reader——PaddlePaddle中的reader是一个Python函数,每次调用的时候返回一个Python generator。

paddle.batch的输入是一个reader,输出是一个batched reader —— 在PaddlePaddle里,一个reader每次yield一条训练数据,而一个batched reader每次yield一个minbatch。

def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)

    if isinstance(event, paddle.event.EndPass):
        result = trainer.test(
                    paddle.batch(
                        paddle.dataset.imikolov.test(word_dict, N), 32))
        print "Pass %d, Testing metrics %s" % (event.pass_id, result.metrics)
        with open("model_%d.tar"%event.pass_id, 'w') as f:
            trainer.save_parameter_to_tar(f)

trainer.train(
    paddle.batch(paddle.dataset.imikolov.train(word_dict, N), 32),
    num_passes=100,
    event_handler=event_handler)
Pass 0, Batch 0, Cost 7.870579, {'classification_error_evaluator': 1.0}, Testing metrics {'classification_error_evaluator': 0.999591588973999}
Pass 0, Batch 100, Cost 6.136420, {'classification_error_evaluator': 0.84375}, Testing metrics {'classification_error_evaluator': 0.8328699469566345}
Pass 0, Batch 200, Cost 5.786797, {'classification_error_evaluator': 0.8125}, Testing metrics {'classification_error_evaluator': 0.8328542709350586}
...

训练过程是完全自动的,event_handler里打印的日志类似如上所示:

经过30个pass,我们将得到平均错误率为classification_error_evaluator=0.735611。

保存词典和embedding

训练完成之后,我们可以把词典和embedding table单独保存下来,后面可以直接使用

# save word dict and embedding table
embeddings = parameters.get("_proj").reshape(len(word_dict), embsize)
save_dict_and_embedding(word_dict, embeddings)

应用模型

训练模型后,我们可以加载模型参数,用训练出来的词向量初始化其他模型,也可以将模型查看参数用来做后续应用。

查看词向量

PaddlePaddle训练出来的参数可以直接使用parameters.get()获取出来。例如查看单词apple的词向量,即为

embeddings = parameters.get("_proj").reshape(len(word_dict), embsize)

print embeddings[word_dict['apple']]
[-0.38961065 -0.02392169 -0.00093231  0.36301503  0.13538605  0.16076435
-0.0678709 0.1090285 0.42014077 -0.24119169 -0.31847557 0.20410083 0.04910378  0.19021918 -0.0122014  -0.04099389 -0.16924137  0.1911236
-0.10917275 0.13068172 -0.23079982 0.42699069 -0.27679482 -0.01472992 0.2069038   0.09005053 -0.3282454   0.12717034 -0.24218646  0.25304323
0.19072419 -0.24286366]

修改词向量

获得到的embedding为一个标准的numpy矩阵。我们可以对这个numpy矩阵进行修改,然后赋值回去。

def modify_embedding(emb):
    # Add your modification here.
    pass

modify_embedding(embeddings)
parameters.set("_proj", embeddings)

计算词语之间的余弦距离

两个向量之间的距离可以用余弦值来表示,余弦值在 [1,1] [ − 1 , 1 ] 的区间内,向量间余弦值越大,其距离越近。这里我们在calculate_dis.py中实现不同词语的距离度量。
用法如下:

from scipy import spatial

emb_1 = embeddings[word_dict['world']]
emb_2 = embeddings[word_dict['would']]

print spatial.distance.cosine(emb_1, emb_2)
0.99375076448

总结

  • 本章中,我们介绍了词向量、语言模型和词向量的关系、以及如何通过训练神经网络模型获得词向量。
  • 在信息检索中,我们可以根据向量间的余弦夹角,来判断 query 和文档关键词这二者间的相关性。
  • 在句法分析和语义分析中,训练好的词向量可以用来初始化模型,以得到更好的效果。
  • 在文档分类中,有了词向量之后,可以用聚类的方法将文档中同义词进行分组。希望大家在本章后能够自行运用词向量进行相关领域的研究。

参考文献

  1. Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model[J]. journal of machine learning research, 2003, 3(Feb): 1137-1155.
  2. Mikolov T, Kombrink S, Deoras A, et al. Rnnlm-recurrent neural network language modeling toolkit[C]//Proc. of the 2011 ASRU Workshop. 2011: 196-201.
  3. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
  4. Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(Nov): 2579-2605.
  5. https://en.wikipedia.org/wiki/Singular_value_decomposition



知识共享许可协议
本教程 由 PaddlePaddle 创作,采用 知识共享 署名-相同方式共享 4.0 国际 许可协议进行许可。

你可能感兴趣的:(PaddlePaddle)