Flink学习笔记Operators串烧

说明:本文为《Flink大数据项目实战》学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习CSDN官网课程:

Flink大数据项目实战:http://t.cn/ExrHPl9

 

DataStream Transformation

1.1 DataStream转换关系

上图标识了DataStream不同形态直接的转换关系,也可以看出DataStream主要包含以下几类:

1.keyby就是按照指定的key分组

2.window是一种特殊的分组(基于时间)

3.coGroup

4.join Join是cogroup 的特例

5.Connect就是松散联盟,类似于英联邦

1.2 DataStream

DataStream 是 Flink 流处理 API 中最核心的数据结构。它代表了一个运行在多个分区上的并行流。

一个 DataStream 可以从 StreamExecutionEnvironment 通过env.addSource(SourceFunction) 获得。

1.3 map&flatMap

含义:数据映射(1进1出和1进n出)

 

转换关系:DataStream → DataStream

 

使用场景:

ETL时删减计算过程中不需要的字段

案例1:

public class TestMap {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStream input=env.generateSequence(0,10);

 

        DataStream plusOne=input.map(new MapFunction() {

 

            @Override

            public Long map(Long value) throws Exception {

                System.out.println("--------------------"+value);

                return value+1;

            }

        });

 

        plusOne.print();

 

        env.execute();

    }

}

 

案例2:

public class TestFlatmap {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStream input=env.fromElements(WORDS);

 

        DataStream wordStream=input.flatMap(new FlatMapFunction() {

            @Override

            public void flatMap(String value, Collector out) throws Exception {

 

                String[] tokens = value.toLowerCase().split("\\W+");

 

                for (String token : tokens) {

                    if (token.length() > 0) {

                        out.collect(token);

                    }

                }

            }

        });

 

        wordStream.print();

 

        env.execute();

    }

 

    public static final String[] WORDS = new String[] {

            "To be, or not to be,--that is the question:--",

            "Whether 'tis nobler in the mind to suffer",

            "The slings and arrows of outrageous fortune",

            "And by opposing end them?--To die,--to sleep,--",

            "Be all my sins remember'd."

    };

}

Flink学习笔记Operators串烧_第1张图片

如右上图所示,DataStream 各个算子会并行运行,算子之间是数据流分区。如 Source 的第一个并行实例(S1)和 flatMap() 的第一个并行实例(m1)之间就是一个数据流分区。而在 flatMap() 和 map() 之间由于加了 rebalance(),它们之间的数据流分区就有3个子分区(m1的数据流向3个map()实例)。这与 Apache Kafka 是很类似的,把流想象成 Kafka Topic,而一个流分区就表示一个 Topic Partition,流的目标并行算子实例就是 Kafka Consumers。

1.4 filter

含义:数据筛选(满足条件event的被筛选出来进行后续处理),根据FliterFunction返回的布尔值来判断是否保留元素,true为保留,false则丢弃

 

 

转换关系: DataStream → DataStream

 

使用场景:

过滤脏数据、数据清洗等

 

案例:

public class TestFilter {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStream input=env.generateSequence(-5,5);

 

        input.filter(new FilterFunction() {

            @Override

            public boolean filter(Long value) throws Exception {

                return value>0;

            }

        }).print();

 

        env.execute();

    }

}

1.5 keyBy

含义:

根据指定的key进行分组(逻辑上把DataStream分成若干不相交的分区,key一样的event会被划分到相同的partition,内部采用hash分区来实现)

 

转换关系: DataStream → KeyedStream

 

限制:

1.可能会出现数据倾斜,可根据实际情况结合物理分区来解决(后面马上会讲到)

2.Key的类型限制:

1)不能是没有覆盖hashCode方法的POJO

2)不能是数组

 

使用场景:

1.分组(类比SQL中的分组)

 

案例:

public class TestKeyBy {

    public static void main(String[] args) throws Exception {

        //统计各班语文成绩最高分是谁

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStream> input=env.fromElements(TRANSCRIPT);

 

        KeyedStream,Tuple> keyedStream = input.keyBy("f0");

 

        keyedStream.maxBy("f3").print();

 

        env.execute();

 

    }

 

    public static final Tuple4[] TRANSCRIPT = new Tuple4[] {

            Tuple4.of("class1","张三","语文",100),

            Tuple4.of("class1","李四","语文",78),

            Tuple4.of("class1","王五","语文",99),

            Tuple4.of("class2","赵六","语文",81),

            Tuple4.of("class2","钱七","语文",59),

            Tuple4.of("class2","马二","语文",97)

    };

}

1.6 KeyedStream

KeyedStream用来表示根据指定的key进行分组的数据流。

 

一个KeyedStream可以通过调用DataStream.keyBy()来获得。

 

在KeyedStream上进行任何transformation都将转变回DataStream。

 

在实现中,KeyedStream是把key的信息写入到了transformation中。

 

每个event只能访问所属key的状态,其上的聚合函数可以方便地操作和保存对应key的状态。

1.7 reduce&fold& Aggregations

分组之后当然要对分组之后的数据也就是KeyedStream进行各种聚合操作啦(想想SQL)。

 

KeyedStream → DataStream

 

对于KeyedStream的聚合操作都是滚动的(rolling,在前面的状态基础上继续聚合),千万不要理解为批处理时的聚合操作(DataSet,其实也是滚动聚合,只不过他只把最后的结果给了我们)。

Flink学习笔记Operators串烧_第2张图片

案例1:

public class TestReduce {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStream> input=env.fromElements(TRANSCRIPT);

 

        KeyedStream,Tuple> keyedStream = input.keyBy(0);

 

        keyedStream.reduce(new ReduceFunction>() {

            @Override

            public Tuple4 reduce(Tuple4 value1, Tuple4 value2) throws Exception {

                value1.f3+=value2.f3;

                return value1;

            }

        }).print();

 

        env.execute();

    }

 

 

    public static final Tuple4[] TRANSCRIPT = new Tuple4[] {

            Tuple4.of("class1","张三","语文",100),

            Tuple4.of("class1","李四","语文",78),

            Tuple4.of("class1","王五","语文",99),

            Tuple4.of("class2","赵六","语文",81),

            Tuple4.of("class2","钱七","语文",59),

            Tuple4.of("class2","马二","语文",97)

    };

}

 

案例2:

public class TestFold {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStream> input=env.fromElements(TRANSCRIPT);

 

        DataStream result =input.keyBy(0).fold("Start", new FoldFunction,String>() {

 

            @Override

            public String fold(String accumulator, Tuple4 value) throws Exception {

                return accumulator + "=" + value.f1;

            }

        });

 

        result.print();

 

        env.execute();

    }

 

    public static final Tuple4[] TRANSCRIPT = new Tuple4[] {

            Tuple4.of("class1","张三","语文",100),

            Tuple4.of("class1","李四","语文",78),

            Tuple4.of("class1","王五","语文",99),

            Tuple4.of("class2","赵六","语文",81),

            Tuple4.of("class2","钱七","语文",59),

            Tuple4.of("class2","马二","语文",97)

    };

}

1.8 Interval join

KeyedStream,KeyedStream → DataStream

 

在给定的周期内,按照指定的key对两个KeyedStream进行join操作,把符合join条件的两个event拉到一起,然后怎么处理由用户你来定义。

 

key1 == key2 && e1.timestamp + lowerBound <= e2.timestamp <= e1.timestamp + upperBound

 

场景:把一定时间范围内相关的分组数据拉成一个宽表

 

案例:

public class TestIntervalJoin {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

 

        DataStream input1=env.fromElements(TRANSCRIPTS).assignTimestampsAndWatermarks(new AscendingTimestampExtractor() {

            @Override

            public long extractAscendingTimestamp(Transcript element) {

                return element.time;

            }

        });

 

        DataStream input2=env.fromElements(STUDENTS).assignTimestampsAndWatermarks(new AscendingTimestampExtractor() {

            @Override

            public long extractAscendingTimestamp(Student element) {

                return element.time;

            }

        });

 

        KeyedStream  keyedStream=input1.keyBy(new KeySelector() {

            @Override

            public String getKey(Transcript value) throws Exception {

                return value.id;

            }

        });

 

        KeyedStream  otherKeyedStream=input2.keyBy(new KeySelector() {

            @Override

            public String getKey(Student value) throws Exception {

                return value.id;

            }

        });

 

        //e1.timestamp + lowerBound <= e2.timestamp <= e1.timestamp + upperBound

 

        // key1 == key2 && leftTs - 2 < rightTs < leftTs + 2

 

        keyedStream.intervalJoin(otherKeyedStream)

                .between(Time.milliseconds(-2), Time.milliseconds(2))

                .upperBoundExclusive()

                .lowerBoundExclusive()

                .process(new ProcessJoinFunction>() {

 

                    @Override

                    public void processElement(Transcript transcript, Student student, Context ctx, Collector> out) throws Exception {

                        out.collect(Tuple5.of(transcript.id,transcript.name,student.class_,transcript.subject,transcript.score));

                    }

 

                }).print();

 

        env.execute();

 

    }

 

    public static final Transcript[] TRANSCRIPTS = new Transcript[] {

            new Transcript("1","张三","语文",100,System.currentTimeMillis()),

            new Transcript("2","李四","语文",78,System.currentTimeMillis()),

            new Transcript("3","王五","语文",99,System.currentTimeMillis()),

            new Transcript("4","赵六","语文",81,System.currentTimeMillis()),

            new Transcript("5","钱七","语文",59,System.currentTimeMillis()),

            new Transcript("6","马二","语文",97,System.currentTimeMillis())

    };

 

    public static final Student[] STUDENTS = new Student[] {

            new Student("1","张三","class1",System.currentTimeMillis()),

            new Student("2","李四","class1",System.currentTimeMillis()),

            new Student("3","王五","class1",System.currentTimeMillis()),

            new Student("4","赵六","class2",System.currentTimeMillis()),

            new Student("5","钱七","class2",System.currentTimeMillis()),

            new Student("6","马二","class2",System.currentTimeMillis())

    };

 

    private static class Transcript{

        private String id;

        private String name;

        private String subject;

        private int score;

        private long time;

 

        public Transcript(String id, String name, String subject, int score, long time) {

            this.id = id;

            this.name = name;

            this.subject = subject;

            this.score = score;

            this.time = time;

        }

 

        public String getId() {

            return id;

        }

 

        public void setId(String id) {

            this.id = id;

        }

 

        public String getName() {

            return name;

        }

 

        public void setName(String name) {

            this.name = name;

        }

 

        public String getSubject() {

            return subject;

        }

 

        public void setSubject(String subject) {

            this.subject = subject;

        }

 

        public int getScore() {

            return score;

        }

 

        public void setScore(int score) {

            this.score = score;

        }

 

        public long getTime() {

            return time;

        }

 

        public void setTime(long time) {

            this.time = time;

        }

    }

 

    private static class Student{

        private String id;

        private String name;

        private String class_;

        private long time;

 

        public Student(String id, String name, String class_, long time) {

            this.id = id;

            this.name = name;

            this.class_ = class_;

            this.time = time;

        }

 

        public String getId() {

            return id;

        }

 

        public void setId(String id) {

            this.id = id;

        }

 

        public String getName() {

            return name;

        }

 

        public void setName(String name) {

            this.name = name;

        }

 

        public String getClass_() {

            return class_;

        }

 

        public void setClass_(String class_) {

            this.class_ = class_;

        }

 

        public long getTime() {

            return time;

        }

 

        public void setTime(long time) {

            this.time = time;

        }

    }

}

1.9 connect & union(合并流)

connect之后生成ConnectedStreams,会对两个流的数据应用不同的处理方法,并且双流 之间可以共享状态(比如计数)。这在第一个流的输入会影响第二个流 时, 会非常有用; union 合并多个流,新的流包含所有流的数据。

 

union是DataStream* → DataStream。

 

connect只能连接两个流,而union可以连接多于两个流 。

 

connect连接的两个流类型可以不一致,而union连接的流的类型必须一致。

Flink学习笔记Operators串烧_第3张图片

案例:

public class TestConnect {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStream someStream = env.generateSequence(0,10);

        DataStream otherStream = env.fromElements(WORDS);

 

        ConnectedStreams connectedStreams = someStream.connect(otherStream);

 

        DataStream result=connectedStreams.flatMap(new CoFlatMapFunction() {

 

            @Override

            public void flatMap1(Long value, Collector out) throws Exception {

                out.collect(value.toString());

            }

 

            @Override

            public void flatMap2(String value, Collector out) {

                for (String word: value.split("\\W+")) {

                    out.collect(word);

                }

            }

        });

 

        result.print();

 

        env.execute();

    }

 

    public static final String[] WORDS = new String[] {

            "And thus the native hue of resolution",

            "Is sicklied o'er with the pale cast of thought;",

            "And enterprises of great pith and moment,",

            "With this regard, their currents turn awry,",

            "And lose the name of action.--Soft you now!",

            "The fair Ophelia!--Nymph, in thy orisons",

            "Be all my sins remember'd."

    };

}

1.10 CoMap, CoFlatMap

跟map and flatMap类似,只不过作用在ConnectedStreams上

ConnectedStreams → DataStream

1.11 split & select(拆分流)

split

1.DataStream → SplitStream

2.按照指定标准将指定的DataStream拆分成多个流用SplitStream来表示

 

select

1.SplitStream → DataStream

2.跟split搭配使用,从SplitStream中选择一个或多个流

 

案例:

public class TestSplitAndSelect {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStream input=env.generateSequence(0,10);

 

        SplitStream splitStream = input.split(new OutputSelector() {

 

            @Override

            public Iterable select(Long value) {

                List output = new ArrayList();

                if (value % 2 == 0) {

                    output.add("even");

                }

                else {

                    output.add("odd");

                }

                return output;

            }

 

        });

 

        //splitStream.print();

 

        DataStream even = splitStream.select("even");

        DataStream odd = splitStream.select("odd");

        DataStream all = splitStream.select("even","odd");

 

        //even.print();

 

        odd.print();

 

        //all.print();

 

        env.execute();

    }

}

1.12 project

含义:从Tuple中选择属性的子集

 

限制:

1.仅限event数据类型为Tuple的DataStream

2.仅限Java API

 

使用场景:

ETL时删减计算过程中不需要的字段

 

案例:

public class TestProject {

    public static void main(String[] args) throws Exception {

        final StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();

 

        DataStreamSource> input=env.fromElements(TRANSCRIPT);

 

        DataStream> out = input.project(1,3);

 

        out.print();

 

        env.execute();

 

    }

 

    public static final Tuple4[] TRANSCRIPT = new Tuple4[] {

            Tuple4.of("class1","张三","语文",100),

            Tuple4.of("class1","李四","语文",78),

            Tuple4.of("class1","王五","语文",99),

            Tuple4.of("class2","赵六","语文",81),

            Tuple4.of("class2","钱七","语文",59),

            Tuple4.of("class2","马二","语文",97)

    };

}

1.13 assignTimestampsAndWatermarks

含义:提取记录中的时间戳作为Event time,主要在window操作中发挥作用,不设置默认就是ProcessingTime

 

限制:

只有基于event time构建window时才起作用

 

使用场景:

当你需要使用event time来创建window时,用来指定如何获取event的时间戳

 

案例:讲到window时再说

1.14 window相关Operators

放在讲解完Event Time之后在细讲

 

构建window

1.window

2.windowAll

 

window上的操作

1.Window ApplyWindow Reduce

2.Window Fold

3.Aggregations on windows(sum、min、max、minBy、maxBy)

4.Window Join

5.Window CoGroup

2. 物理分区

2.1回顾 Streaming DataFlow

Flink学习笔记Operators串烧_第4张图片

2.2并行化DataFlow

Flink学习笔记Operators串烧_第5张图片

2.3算子间数据传递模式

One-to-one streams

保持元素的分区和顺序

 

Redistributing streams

1.改变流的分区

2.重新分区策略取决于使用的算子

a)keyBy() (re-partitions by hashing the key) 

b)broadcast()

c)rebalance() (which re-partitions randomly)

2.4物理分区

能够对分区在物理上进行改变的算子如下图所示:

Flink学习笔记Operators串烧_第6张图片

上面算子都是Transformation,只是改变了分区。它们都是DataStream → DataStream。

2.5 rescale

通过轮询调度将元素从上游的task一个子集发送到下游task的一个子集。

原理:

第一个task并行度为2,第二个task并行度为6,第三个task并行度为2。从第一个task到第二个task,Src的子集Src1 和 Map的子集Map1,2,3对应起来,Src1会以轮询调度的方式分别向Map1,2,3发送记录。从第二个task到第三个task,Map的子集1,2,3对应Sink的子集1,这三个流的元素只会发送到Sink1。假设我们每个TaskManager有三个Slot,并且我们开了SlotSharingGroup,那么通过rescale,所有的数据传输都在一个TaskManager内,不需要通过网络。

Flink学习笔记Operators串烧_第7张图片

2.6任务链和资源组相关操作

startNewChain()表示从这个操作开始,新启一个新的chain。

someStream.filter(...).map(...).startNewChain().map(...)

如上一段操作,表示从map()方法开始,新启一个新的chain。

 

如果禁用任务链可以调用disableChaining()方法。

 

如果想单独设置一个SharingGroup,可以调用slotSharingGroup("name")方法。

Flink学习笔记Operators串烧_第8张图片

你可能感兴趣的:(Hadoop,Spark,Storm,数据分析,Python,Linux)