每门语言的学习都要经历最经典的helloworld过程,学习storm框架也一样,本节我们先来运行storm为我们做好的storm-starter例子,来确定storm服务搭建是正常的,然后我们自己来从零开始写一个简单的storm任务
请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址
首先要下载storm源代码,我们服务部署的是1.0.1版本,那么我就下载同样的版本,在github.com上找到https://github.com/apache/storm/releases/tag/v1.0.1的源代码(注意,这里的源代码和上一节中降到的部署用的包是不同的,这个是未编译的原始代码,上节中的是编译好的直接可运行的包,当然你也可以用本节下载的源代码重新编译来部署),下载:
wget https://github.com/apache/storm/archive/v1.0.1.tar.gz
解压后编译代码中的样例start-storm(位于源代码的examples/storm-starter),编译方法如下(也可以加载到eclipse,用maven编译):
mvn -D maven.test.skip=true clean package
注:如果没有安装maven则先安装,具体方法百度一下
编译好了之后会生成target/storm-starter-1.0.1.jar文件,下面我们来在我们部署好的storm上运行这个jar包里的storm.starter.StatefulTopology类
执行:
storm jar examples/storm-starter/storm-starter-topologies-*.jar storm.starter.StatefulTopology statetopology
这里的storm命令是在storm部署目录的bin目录下的脚本,如果没有配置PATH环境变量,可以用绝对路径执行,如果我的storm部署在/data/apache-storm-1.0.1/,那么就执行:
/data/apache-storm-1.0.1/bin/storm jar storm-starter-1.0.1.jar storm.starter.StatefulTopology statetopology
如果运行成功说明你的storm是正常的,输出如下:
[root@centos7vm storm-1.0.1]# /data/apache-storm-1.0.1/bin/storm jar storm-starter-1.0.1.jar storm.starter.StatefulTopology statetopology
Running: java -client -Ddaemon.name= -Dstorm.options= -Dstorm.home=/data/apache-storm-1.0.1 -Dstorm.log.dir=/data/apache-storm-1.0.1/logs -Djava.library.path=/usr/local/lib:/opt/local/lib:/usr/lib -Dstorm.conf.file= -cp /data/apache-storm-1.0.1/lib/storm-core-1.0.1.jar:/data/apache-storm-1.0.1/lib/kryo-3.0.3.jar:/data/apache-storm-1.0.1/lib/reflectasm-1.10.1.jar:/data/apache-storm-1.0.1/lib/asm-5.0.3.jar:/data/apache-storm-1.0.1/lib/minlog-1.3.0.jar:/data/apache-storm-1.0.1/lib/objenesis-2.1.jar:/data/apache-storm-1.0.1/lib/clojure-1.7.0.jar:/data/apache-storm-1.0.1/lib/disruptor-3.3.2.jar:/data/apache-storm-1.0.1/lib/log4j-api-2.1.jar:/data/apache-storm-1.0.1/lib/log4j-core-2.1.jar:/data/apache-storm-1.0.1/lib/log4j-slf4j-impl-2.1.jar:/data/apache-storm-1.0.1/lib/slf4j-api-1.7.7.jar:/data/apache-storm-1.0.1/lib/log4j-over-slf4j-1.6.6.jar:/data/apache-storm-1.0.1/lib/servlet-api-2.5.jar:/data/apache-storm-1.0.1/lib/storm-rename-hack-1.0.1.jar:storm-starter-1.0.1.jar:/data/apache-storm-1.0.1/conf:/data/apache-storm-1.0.1/bin -Dstorm.jar=storm-starter-1.0.1.jar storm.starter.StatefulTopology statetopology
1329 [main] INFO o.a.s.StormSubmitter - Generated ZooKeeper secret payload for MD5-digest: -6806752055047040892:-6736308748043757911
1492 [main] INFO o.a.s.s.a.AuthUtils - Got AutoCreds []
1687 [main] INFO o.a.s.StormSubmitter - Uploading topology jar storm-starter-1.0.1.jar to assigned location: /data/apache-storm-1.0.1/storm-local/nimbus/inbox/stormjar-89ac13d0-dc05-4aec-ab4c-0c6fc6b7f5e0.jar
Start uploading file 'storm-starter-1.0.1.jar' to '/data/apache-storm-1.0.1/storm-local/nimbus/inbox/stormjar-89ac13d0-dc05-4aec-ab4c-0c6fc6b7f5e0.jar' (62385346 bytes)
[==================================================] 62385346 / 62385346
File 'storm-starter-1.0.1.jar' uploaded to '/data/apache-storm-1.0.1/storm-local/nimbus/inbox/stormjar-89ac13d0-dc05-4aec-ab4c-0c6fc6b7f5e0.jar' (62385346 bytes)
2992 [main] INFO o.a.s.StormSubmitter - Successfully uploaded topology jar to assigned location: /data/apache-storm-1.0.1/storm-local/nimbus/inbox/stormjar-89ac13d0-dc05-4aec-ab4c-0c6fc6b7f5e0.jar
2992 [main] INFO o.a.s.StormSubmitter - Submitting topology statetopology in distributed mode with conf {"storm.zookeeper.topology.auth.scheme":"digest","storm.zookeeper.topology.auth.payload":"-6806752055047040892:-6736308748043757911","topology.workers":1,"topology.debug":false}
3682 [main] INFO o.a.s.StormSubmitter - Finished submitting topology: statetopology
web界面如下:
stateopology详细运行情况可以点击进去
我们用eclipse(你可以用其他IDE)导入源代码,找到main函数如下:
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomIntegerSpout());
builder.setBolt("partialsum", new StatefulSumBolt("partial"), 1).shuffleGrouping("spout");
builder.setBolt("printer", new PrinterBolt(), 2).shuffleGrouping("partialsum");
builder.setBolt("total", new StatefulSumBolt("total"), 1).shuffleGrouping("printer");
Config conf = new Config();
conf.setDebug(false);
if (args != null && args.length > 0) {
conf.setNumWorkers(1);
StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.createTopology());
} else {
LocalCluster cluster = new LocalCluster();
StormTopology topology = builder.createTopology();
cluster.submitTopology("test", conf, topology);
Utils.sleep(40000);
cluster.killTopology("test");
cluster.shutdown();
}
}
这个storm任务是由一个Spout(随机生成整数值)和三个Bolt(主要对数字做汇总并打印一些信息)组成,为了能看到运行的效果,我们找到部署目录里的log4j2/worker.xml配置文件,找到appenders配置,如果没有自己指定log目录,那么这里面默认应该是部署目录里的logs/workers-artifacts下
我们进入logs/workers-artifacts目录,这里面就是每个storm任务的日志目录
点网页里的stateopology
这里的statetopology-2-1463051043就是我们的任务id,那么在logs/workers-artifacts目录中就会有statetopology-2-1463051043目录
cd statetopology-2-1463051043
会看到又有多个目录,继续点web里的spout进入到spout的状态页面,看到如下:
这是由supervisor启动的executor的主机地址和port,那么我们进入到刚才的statetopology-2-1463051043目录的6700目录就是这个spout的日志啦,执行
[root@centos7vm 6700]# tail -f worker.log
日志在定期输出随机生成的数字
以上就是storm-starter的运行,在storm-starter项目里还有很多功能的演示,在真正使用时会经常参考
下面我们准备不依赖storm的源代码,而是自己从零开始写一个storm任务,来理解一下storm的开发要点
打开eclipse(需要预安装mvn插件,没装的请百度一下),我们新建一个maven工程:
group id设置为:com.shareditor,artifact id设置为:myfirststormpro,其他都默认下一步,最终我们的工程如下:
这是maven为我们自动生成的helloworld,我们用maven编译一下,项目上点右键,选择Run as -> Maven build,在Goals中填clean package,点Run编译,如果编译成功会看到:
以上如果成功,说明maven编译没有问题
请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址
下一步我们来编辑storm项目依赖,打开pom.xml源文件如下:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0modelVersion>
<groupId>com.shareditorgroupId>
<artifactId>myfirststormproartifactId>
<version>0.0.1-SNAPSHOTversion>
<packaging>jarpackaging>
<name>myfirststormproname>
<url>http://maven.apache.orgurl>
<properties>
<project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
properties>
<dependencies>
<dependency>
<groupId>junitgroupId>
<artifactId>junitartifactId>
<version>3.8.1version>
<scope>testscope>
dependency>
dependencies>
project>
在dependencies标签中添加如下依赖:
<dependency>
<groupId>org.apache.stormgroupId>
<artifactId>storm-coreartifactId>
<version>1.0.1version>
dependency>
然后在com.shareditor.myfirststormpro包下创建MySpout.java,如下:
package com.shareditor.myfirststormpro;
import java.util.Map;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.utils.Utils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class MySpout extends BaseRichSpout{
private static final Logger LOG = LoggerFactory.getLogger(MySpout.class);
private SpoutOutputCollector collector;
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.collector = collector;
}
public void nextTuple() {
Utils.sleep(1000);
LOG.info("MySpout nextTuple");
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("value"));
}
}
创建MyBolt.java,如下:
package com.shareditor.myfirststormpro;
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.tuple.Tuple;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class MyBolt extends BaseBasicBolt {
private static final Logger LOG = LoggerFactory.getLogger(MyBolt.class);
public void execute(Tuple input, BasicOutputCollector collector) {
LOG.info("MyBolt execute");
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub
}
}
修改App.java,如下:
package com.shareditor.myfirststormpro;
import org.apache.storm.Config;
import org.apache.storm.StormSubmitter;
import org.apache.storm.topology.TopologyBuilder;
/** * Hello world! * */
public class App {
public static void main(String[] args) throws Exception {
System.out.println("main");
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("myspout", new MySpout());
builder.setBolt("mybolt", new MyBolt()).shuffleGrouping("myspout");
Config conf = new Config();
conf.setDebug(false);
conf.setNumWorkers(1);
StormSubmitter.submitTopologyWithProgressBar(args[0], conf, builder.createTopology());
}
}
重新用maven编译项目,没问题会输出[INFO] BUILD SUCCESS,并且在myfirststormpro/target中会生成:myfirststormpro-0.0.1-SNAPSHOT.jar
用storm启动它,执行:
/data/apache-storm-1.0.1/bin/storm jar myfirststormpro-0.0.1-SNAPSHOT.jar com.shareditor.myfirststormpro.App myfirststormproname
像上面找storm-starter的方法一样找到日志,看到:
[root@centos7vm 6700]# tail -f worker.log
2016-05-13 08:48:59.100 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:49:00.112 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:49:02.308 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:49:03.310 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:49:04.312 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:49:05.314 c.s.m.MySpout [INFO] MySpout nextTuple
……
每隔一秒钟打印一行MySpout nextTuple
下面我们做一些修改,让他真正射点东西:
public void nextTuple() {
Utils.sleep(1000);
LOG.info("MySpout nextTuple");
collector.emit(new Values(10));
}
重新编译并部署后查看日志如下:
[root@centos7vm 6700]# tail -f worker.log
2016-05-13 08:52:13.558 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:52:13.566 c.s.m.MyBolt [INFO] MyBolt execute
2016-05-13 08:52:14.563 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:52:14.565 c.s.m.MyBolt [INFO] MyBolt execute
2016-05-13 08:52:15.564 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:52:15.568 c.s.m.MyBolt [INFO] MyBolt execute
2016-05-13 08:52:16.565 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:52:16.567 c.s.m.MyBolt [INFO] MyBolt execute
2016-05-13 08:52:17.566 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:52:17.569 c.s.m.MyBolt [INFO] MyBolt execute
2016-05-13 08:52:18.567 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:52:18.569 c.s.m.MyBolt [INFO] MyBolt execute
我们看到Bolt开始工作了
那么我们怎么知道Bolt有没有收到数据呢,继续修改Bolt如下:
public void execute(Tuple input, BasicOutputCollector collector) {
int value = (Integer)input.getValueByField("value");
LOG.info("MyBolt execute receive " + value);
}
重新编译并部署后查看日志如下:
[root@centos7vm 6700]# tail -f worker.log
2016-05-13 08:58:02.565 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:58:02.567 c.s.m.MyBolt [INFO] MyBolt execute receive 10
2016-05-13 08:58:03.566 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:58:03.568 c.s.m.MyBolt [INFO] MyBolt execute receive 10
2016-05-13 08:58:04.567 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:58:04.570 c.s.m.MyBolt [INFO] MyBolt execute receive 10
2016-05-13 08:58:05.567 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:58:05.570 c.s.m.MyBolt [INFO] MyBolt execute receive 10
2016-05-13 08:58:06.569 c.s.m.MySpout [INFO] MySpout nextTuple
2016-05-13 08:58:06.573 c.s.m.MyBolt [INFO] MyBolt execute receive 10
在我们的Spout中添加:
@Override
public void ack(Object msgId) {
LOG.info("MySpout arc");
super.ack(msgId);
}
重新编译部署后查看log发现没什么变化,这是为什么呢?
因为我们的bolt没有显式地调用ack函数,所以继续修改bolt,但是只有OutputCollector才能调用ack函数,因此我们再尝试一个bolt基类:BaseRichBolt,把整个代码修改成如下:
package com.shareditor.myfirststormpro;
import java.util.Map;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Tuple;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public class MyBolt extends BaseRichBolt {
private static final Logger LOG = LoggerFactory.getLogger(MyBolt.class);
private OutputCollector collector;
public void declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub
}
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
public void execute(Tuple input) {
int value = (Integer)input.getValueByField("value");
LOG.info("MyBolt execute receive " + value);
collector.ack(input);
}
}
再次编译部署查看log,看到了打印ack的日志啦
总结一下:storm就是帮我们管理了流式计算的服务部署和数据流传递,我们只需要实现具体的业务逻辑即可