平衡二叉排序树

平衡二叉排序树(AVL树):左右子树高度相差不超过1。相对二叉排序树查找效率更高。

#define EH 0//左右子树等高
#define RH -1//左子树高
#define LH 1//右子树高
typedef struct BiTNode
{
	int data;
	int bf ;//平衡因子
	struct BiTNode *rchild, *lchild;
}BiTNode,*BiTNode;


void R_Rotate (BiTree *p)
{
	BiTree L;
	L = (*p)->lchild;
	(*p)->lchild = L->rchild;
	L->rchild = (*p);
	*p = L;
}
void L_Rotate(BiTree *p)
{
	BiTree R;
	R = (*p)->rchild;
	(*p)->rchild = R->lchild;
	R->lchild = (*p);
	*p = R;
}	
void LeftBalance(BiTree *T)
{
	BiTree L, Lr;
	L = (*T)->rchild;
	switch(L->bf)
	{
		case LH:
			(*T)->bf = (*L)->bf = EH;
			R_Rotate(T);
			break;
		case RH:
			Lr = L->rchild;
			switch(Lr->bf)
			{
				case LH:
					(*T)->bf = RH;
					L->bf = EH;
					break;
				case EH:
					(*T)->bf = Lr->bf = EH;
					break;
				case RH:
					(*T)->bf = EH;
					L->bf = LH;
					break;
			}	
			Lr->bf = EH;
			L_Rotate(&(*T)->lchild);
			R_Rotete(T);
	}
}
void RightBalance(BiTree *T)
{
	BiTree R, Rl;
	R = (*T)->lchild;
	switch(R->bf)
	{
		case RH:
			(*T)->bf = (*L)->bf = EH;
			L_Rotate(T);
			break;
		case LH:
			Rl = R->lchild;
			switch(Rl->bf)
			{
				case RH:
					(*T)->bf = LH;
					L->bf = EH;
					break;
				case EH:
					(*T)->bf = Lr->bf = EH;
				case LH:
					(*T)->bf = LH;
					L->bf = RH;
					break;
			}
			Rl->bf = RH;
			R_Rotate(&(*T)->rchild);
			L_Rotate(T);
	}
}
int InsertAVL(BiTree *T, int e, int *taller)//往树中插入节点,taller用于表示这个树插入后是否长高
{
	if(!*T)		//空树
	{
		*T = (BiTree)malloc(sizeof(BitNode));
		(*T)->data = e;
		(*T)->rchild = (*T)->lchild = NULL;
		*taller = TRUE;
		(*T)->bf = EH;
	}
	else
	{
		if(e == (*T)->data)//节点存在
		{
			*taller = FALSE;
			return FALSE;
		}
		if(e < (*T)->data )
		{
			if(!InsertAVL(&(*T)->lchild, e, taller))//节点存在
			{
				return FALSE;
			}
			if(*taller)//长高后,插入每个节点实时监测,出现不平衡状态及时修改
			{
				switch((*T)->bf) //检查长高后的方向
				{
					case LH://插入之前左子树比右子树高
						LeftBalance(T);//左平衡处理后,平衡
						*taller = FALSE;
						break;
					case EH://插入之前右子树与左子树等高
						(*T)->bf = LH;
						*taller = FALSE;
						break;
					case RH:
					    (*T)->bf = EH;
					    *taller = FALSE;
						break;
				}
			}
		}else{
			if(!InsertAVL(&(*T)->rchild, e, taller))
			{
				return FALSE;
			}
			if(*taller)
			{
				switch((*T)->bf)
				{
					case LH:
						(*T)->bf = EH;
						*taller = FASLE;
						break;
					case EH:
						(*T)->bf = RH;
						*taller = FALSE;
						break;
					case RH:
						RightBalance(T);
						*taller = FALSE;
						break;
				}
			}
		}
	}
}



#define EH 0//左右子树等高
#define RH -1//左子树高
#define LH 1//右子树高
typedef struct BiTNode
{
	int data;
	int bf ;//平衡因子
	struct BiTNode *rchild, *lchild;
}BiTNode,*BiTNode;


void R_Rotate (BiTree *p)
{
	BiTree L;
	L = (*p)->lchild;
	(*p)->lchild = L->rchild;
	L->rchild = (*p);
	*p = L;
}
void L_Rotate(BiTree *p)
{
	BiTree R;
	R = (*p)->rchild;
	(*p)->rchild = R->lchild;
	R->lchild = (*p);
	*p = R;
}	
void LeftBalance(BiTree *T)
{
	BiTree L, Lr;
	L = (*T)->rchild;
	switch(L->bf)
	{
		case LH:
			(*T)->bf = (*L)->bf = EH;
			R_Rotate(T);
			break;
		case RH:
			Lr = L->rchild;
			switch(Lr->bf)
			{
				case LH:
					(*T)->bf = RH;
					L->bf = EH;
					break;
				case EH:
					(*T)->bf = Lr->bf = EH;
					break;
				case RH:
					(*T)->bf = EH;
					L->bf = LH;
					break;
			}	
			Lr->bf = EH;
			L_Rotate(&(*T)->lchild);
			R_Rotete(T);
	}
}
void RightBalance(BiTree *T)
{
	BiTree R, Rl;
	R = (*T)->lchild;
	switch(R->bf)
	{
		case RH:
			(*T)->bf = (*L)->bf = EH;
			L_Rotate(T);
			break;
		case LH:
			Rl = R->lchild;
			switch(Rl->bf)
			{
				case RH:
					(*T)->bf = LH;
					L->bf = EH;
					break;
				case EH:
					(*T)->bf = Lr->bf = EH;
				case LH:
					(*T)->bf = LH;
					L->bf = RH;
					break;
			}
			Rl->bf = RH;
			R_Rotate(&(*T)->rchild);
			L_Rotate(T);
	}
}
int InsertAVL(BiTree *T, int e, int *taller)//往树中插入节点,taller用于表示这个树插入后是否长高
{
	if(!*T)		//空树
	{
		*T = (BiTree)malloc(sizeof(BitNode));
		(*T)->data = e;
		(*T)->rchild = (*T)->lchild = NULL;
		*taller = TRUE;
		(*T)->bf = EH;
	}
	else
	{
		if(e == (*T)->data)//节点存在
		{
			*taller = FALSE;
			return FALSE;
		}
		if(e < (*T)->data )
		{
			if(!InsertAVL(&(*T)->lchild, e, taller))//节点存在
			{
				return FALSE;
			}
			if(*taller)//长高后,插入每个节点实时监测,出现不平衡状态及时修改
			{
				switch((*T)->bf) //检查长高后的方向
				{
					case LH://插入之前左子树比右子树高
						LeftBalance(T);//左平衡处理后,平衡
						*taller = FALSE;
						break;
					case EH://插入之前右子树与左子树等高
						(*T)->bf = LH;
						*taller = FALSE;
						break;
					case RH:
					    (*T)->bf = EH;
					    *taller = FALSE;
						break;
				}
			}
		}else{
			if(!InsertAVL(&(*T)->rchild, e, taller))
			{
				return FALSE;
			}
			if(*taller)
			{
				switch((*T)->bf)
				{
					case LH:
						(*T)->bf = EH;
						*taller = FASLE;
						break;
					case EH:
						(*T)->bf = RH;
						*taller = FALSE;
						break;
					case RH:
						RightBalance(T);
						*taller = FALSE;
						break;
				}
			}
		}
	}
}


你可能感兴趣的:(数据结构,编程)