A*算法

A*算法 编辑 

百度A*算法
A*算法,A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法。算法中的距离估算值与实际值越接近,最终搜索速度越快。

中文名
A*算法
外文名
A-star algorithm

别 称
启发式搜索
表达式
f(n)=g(n)+h(n)

目录

1 原理
▪ h(n)的选取
2 简单案例

3 算法分类
4 实际运用
5 其它算法

6 好处

原理
编辑
A*[1] (A-Star)算法是一种静态路网中求解最短路最有效的直接搜索方法,也是许多其他问题的常用启发式算法。注意——是最有效的直接搜索算法,之后涌现了很多预处理算法(如ALT,CH,HL等等),在线查询效率是A*算法的数千甚至上万倍。
公式表示为: f(n)=g(n)+h(n),
其中, f(n) 是从初始状态经由状态n到目标状态的代价估计,
g(n) 是在状态空间中从初始状态到状态n的实际代价,
h(n) 是从状态n到目标状态的最佳路径的估计代价。
(对于路径搜索问题,状态就是图中的节点,代价就是距离)
h(n)的选取
保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取(或者说h(n)的选取)。
我们以d(n)表达状态n到目标状态的距离,那么h(n)的选取大致有如下三种情况:

如果h(n)< d(n)到目标状态的实际距离,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。
如果 h(n)>d(n),搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。[2] 

简单案例
编辑
参见参考资料中的“A*算法入门”[2] 。
另外,A*同样可以用于其他搜索问题,只需要对应状态和状态的距离即可。
算法分类
编辑
该算法在最短路径搜索算法中分类为:
直接搜索算法:直接在实际地图上进行搜索,不经过任何预处理;
启发式算法:通过启发函数引导算法的搜索方向;
静态图搜索算法:被搜索的图的权值不随时间变化(后被证明同样可以适用于动态图的搜索[3] )。
实际运用
编辑
距离估计与实际值越接近,估价函数取得就越好
例如对于几何路网来说,可以取两节点间曼哈顿距离做为距离估计,即f=g(n) + (abs(dx - nx) + abs(dy - ny));这样估价函数f(n)在g(n)一定的情况下,会或多或少的受距离估计值h(n)的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijkstra算法的毫无方向的向四周搜索。
算法实现(路径搜索)
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
算起点的h(s);
将起点放入OPEN表;
将n节点插入CLOSE表中;
按照f(n)将OPEN表中的节点排序;//实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
}//endwhile(OPEN!=NULL)
保存路径,即从终点开始,每个节点沿着父节点移动直至起点,这就是你的路径;
其它算法
编辑
启发式搜索其实有很多的算法
比如:局部择优搜索法、最好优先搜索法等等,当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的策略不同。像局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点、父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了其他的节点,可能也把最好的节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,它在搜索时,并没有舍弃节点(除非该节点是死节点),在每一步的估价中都把当前的节点和以前的节点的f(n)比较得到一个“最佳的节点”,这样可以有效的防止“最佳节点”的丢失。那么A*算法又是一种什么样的算法呢?
好处
编辑
其实A*算法也是一种最好优先的算法
只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!
我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A*算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为:
f’(n) = g’(n) + h’(n)
这里,f’(n)是估价函数,g’(n)是起点到节点n的最短路径值,h’(n)是n到目标的最短路经的启发值。由于这个f’(n)其实是无法预先知道的,所以我们用前面的估价函数f(n)做近似。g(n)代替g’(n),但 g(n)>=g’(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h’(n),但h(n)<=h’(n)才可(这一点特别的重要)。可以证明应用这样的估价函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。
举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h’(n),所以由前述可知广度优先算法是一种可采纳的。实际也是。当然它是一种最臭的A*算法。
再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除的节点就越多,估价函数越好或说这个算法越好。这就是为什么广度优先算法的不甚为好的原因了,因为它的h(n)=0,没有一点启发信息。但在游戏开发中由于实时性的问题,h(n)的信息越多,它的计算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这里就有一个平衡的问题。

你可能感兴趣的:(备忘录)