语义分割 Maskrcnn 训练COCO格式数据集

Maskrcnn 训练COCO格式数据集

使用coco-annotator标注工具

coco.py改为

"""
Mask R-CNN
Configurations and data loading code for MS COCO.

Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla

------------------------------------------------------------

Usage: import the module (see Jupyter notebooks for examples), or run from
       the command line as such:

    # Train a new model starting from pre-trained COCO weights
    python3 coco.py train --dataset=/path/to/coco/ --model=coco

    # Train a new model starting from ImageNet weights. Also auto download COCO dataset
    python3 coco.py train --dataset=/path/to/coco/ --model=imagenet --download=True

    # Continue training a model that you had trained earlier
    python3 coco.py train --dataset=/path/to/coco/ --model=/path/to/weights.h5

    # Continue training the last model you trained
    python3 coco.py train --dataset=/path/to/coco/ --model=last

    # Run COCO evaluatoin on the last model you trained
    python3 coco.py evaluate --dataset=/path/to/coco/ --model=last
"""

import os
import sys
import time
import numpy as np
import imgaug  # https://github.com/aleju/imgaug (pip3 install imgaug)

# 下载和安装Python COCO工具  https://github.com/waleedka/coco
# 这个fork的原始地址 https://github.com/pdollar/coco 修复在Python 3下的bug.
# I submitted a pull request https://github.com/cocodataset/cocoapi/pull/50
# If the PR is merged then use the original repo.
# Note: Edit PythonAPI/Makefile and replace "python" with "python3".
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools import mask as maskUtils

import zipfile
import urllib.request
import shutil

# 项目根目录
ROOT_DIR = os.path.abspath("../../")

# 导入 Mask RCNN
sys.path.append(ROOT_DIR)  #找到本地版本库
from mrcnn.config import Config
from mrcnn import model as modellib, utils

#训练权重文件路径
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")

# 存储日志和模型检查点的路径 可以通过命令行 --logs提供
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")
DEFAULT_DATASET_YEAR = "2014"

############################################################
#  配置
############################################################


class CocoConfig(Config):
    """Configuration for training on MS COCO.
    Derives from the base Config class and overrides values specific
    to the COCO dataset.
    """
    # 给配置一个名字
    NAME = "coco"

    # 我们使用12G显存的GPU, 可以放两张图片.
    # 如果显存更小就调节图片数量.
    IMAGES_PER_GPU = 1

    # 取消对在8 gpus上训练的注释(默认值为1)
    # GPU_COUNT = 8

    # 分类数 (包含背景)
    NUM_CLASSES = 1 + 2  # COCO 有80个分类



    IMAGE_MIN_DIM = 512
    IMAGE_MAX_DIM = 1152
    STEPS_PER_EPOCH = 100
############################################################
#  数据集
############################################################

class CocoDataset(utils.Dataset):
    def load_coco(self, dataset_dir, subset, year=DEFAULT_DATASET_YEAR, class_ids=None,
                  class_map=None, return_coco=False, auto_download=False):
        """读取COCO数据集的子集.
        dataset_dir: COCO数据集根目录.
        subset: 读取哪一个 (train, val, minival, valminusminival)
        year: 作为字符串读取哪一年的数据集 (2014, 2017) 而不是作为整型
        class_ids: 如果提供了, 只读取给定分类id的图片.
        class_map: TODO:尚未实现。支持将不同数据集的类映射到同一个类ID。
        return_coco: 如果为真, 返回COCO对象.
        auto_download: 自动下载和解压 MS-COCO 图片和标注
        """

        if auto_download is True:
            self.auto_download(dataset_dir, subset, year)

        coco = COCO("{}\\annotations\\instances_{}{}.json".format(dataset_dir, subset, year))
        if subset == "minival" or subset == "valminusminival":
            subset = "val"
        image_dir = "{}\\{}{}".format(dataset_dir, subset, year)

        # 读取所有分类或者一个子集?
        if not class_ids:
            # 所有分类
            class_ids = sorted(coco.getCatIds())

        # 所有图片或者一个子集?
        if class_ids:
            image_ids = []
            for id in class_ids:
                image_ids.extend(list(coco.getImgIds(catIds=[id])))
            # 删除重复项
            image_ids = list(set(image_ids))
        else:
            # 所有图片
            image_ids = list(coco.imgs.keys())

        # 增加分类
        for i in class_ids:
            self.add_class("coco", i, coco.loadCats(i)[0]["name"])

        # 增加图片
        for i in image_ids:
            self.add_image(
                "coco", image_id=i,
                path=os.path.join(image_dir, coco.imgs[i]['file_name']),
                width=coco.imgs[i]["width"],
                height=coco.imgs[i]["height"],
                annotations=coco.loadAnns(coco.getAnnIds(
                    imgIds=[i], catIds=class_ids, iscrowd=None)))
        if return_coco:
            return coco

    def auto_download(self, dataDir, dataType, dataYear):
        """如果请求下载COCO数据集图片和标注.
        dataDir: COCO数据集根目录.
        dataType: 想要读取哪一个 (train, val, minival, valminusminival)
        dataYear: 想要读取什么年份的 (2014, 2017) 使用字符串而不是整型
        备注:
            对于 2014, 使用 "train", "val", "minival", 或者 "valminusminival"
            对于 2017, 只有 "train" 和 "val" 的标注可用
        """

        # 安装路径和文件名
        if dataType == "minival" or dataType == "valminusminival":
            imgDir = "{}/{}{}".format(dataDir, "val", dataYear)
            imgZipFile = "{}/{}{}.zip".format(dataDir, "val", dataYear)
            imgURL = "http://images.cocodataset.org/zips/{}{}.zip".format("val", dataYear)
        else:
            imgDir = "{}/{}{}".format(dataDir, dataType, dataYear)
            imgZipFile = "{}/{}{}.zip".format(dataDir, dataType, dataYear)
            imgURL = "http://images.cocodataset.org/zips/{}{}.zip".format(dataType, dataYear)
        # print("Image paths:"); print(imgDir); print(imgZipFile); print(imgURL)

        # 如果主文件夹尚不存在,则创建它
        if not os.path.exists(dataDir):
            os.makedirs(dataDir)

        # 如果本地不可用,那么下载图像
        if not os.path.exists(imgDir):
            os.makedirs(imgDir)
            print("Downloading images to " + imgZipFile + " ...")
            with urllib.request.urlopen(imgURL) as resp, open(imgZipFile, 'wb') as out:
                shutil.copyfileobj(resp, out)
            print("... done downloading.")
            print("Unzipping " + imgZipFile)
            with zipfile.ZipFile(imgZipFile, "r") as zip_ref:
                zip_ref.extractall(dataDir)
            print("... done unzipping")
        print("Will use images in " + imgDir)

        # 安装标注文件路径
        annDir = "{}/annotations".format(dataDir)
        if dataType == "minival":
            annZipFile = "{}/instances_minival2014.json.zip".format(dataDir)
            annFile = "{}/instances_minival2014.json".format(annDir)
            annURL = "https://dl.dropboxusercontent.com/s/o43o90bna78omob/instances_minival2014.json.zip?dl=0"
            unZipDir = annDir
        elif dataType == "valminusminival":
            annZipFile = "{}/instances_valminusminival2014.json.zip".format(dataDir)
            annFile = "{}/instances_valminusminival2014.json".format(annDir)
            annURL = "https://dl.dropboxusercontent.com/s/s3tw5zcg7395368/instances_valminusminival2014.json.zip?dl=0"
            unZipDir = annDir
        else:
            annZipFile = "{}/annotations_trainval{}.zip".format(dataDir, dataYear)
            annFile = "{}/instances_{}{}.json".format(annDir, dataType, dataYear)
            annURL = "http://images.cocodataset.org/annotations/annotations_trainval{}.zip".format(dataYear)
            unZipDir = dataDir
        # print("Annotations paths:"); print(annDir); print(annFile); print(annZipFile); print(annURL)

        # 下载标注文件 如果本地不可用
        if not os.path.exists(annDir):
            os.makedirs(annDir)
        if not os.path.exists(annFile):
            if not os.path.exists(annZipFile):
                print("Downloading zipped annotations to " + annZipFile + " ...")
                with urllib.request.urlopen(annURL) as resp, open(annZipFile, 'wb') as out:
                    shutil.copyfileobj(resp, out)
                print("... done downloading.")
            print("Unzipping " + annZipFile)
            with zipfile.ZipFile(annZipFile, "r") as zip_ref:
                zip_ref.extractall(unZipDir)
            print("... done unzipping")
        print("Will use annotations in " + annFile)

    def load_mask(self, image_id):
        """
            读取给定图像实例掩膜
        不同数据集使用不同形式的掩膜
        这个函数转换不同掩膜格式到比特图的格式
        返回:
        掩膜:一个布尔数组 形状为宽,高,实例数 /每个掩膜每个图像
        class_ids: 实例掩码的类ID的一维数组。
        """
        # 如果不是COCO图像,则委托给父类。
        image_info = self.image_info[image_id]
        if image_info["source"] != "coco":
            return super(CocoDataset, self).load_mask(image_id)

        instance_masks = []
        class_ids = []
        annotations = self.image_info[image_id]["annotations"]
        # 建立这个尺寸的掩膜 [height, width, instance_count] 和对应于掩码每个通道的类ID列表。
        for annotation in annotations:
            class_id = self.map_source_class_id(
                "coco.{}".format(annotation['category_id']))
            if class_id:
                m = self.annToMask(annotation, image_info["height"],
                                   image_info["width"])
                #有些物体太小了,以至于它们的像素面积小于1,最后被取整。跳过那些对象。
                if m.max() < 1:
                    continue
                # 是挤在一起的吗?如果是,请使用负类ID。
                if annotation['iscrowd']:
                    # 对群使用负类ID
                    class_id *= -1
                    # 对于群组掩码,anntomask()有时返回小于给定维度的掩码。如果是,请调整大小。
                    if m.shape[0] != image_info["height"] or m.shape[1] != image_info["width"]:
                        m = np.ones([image_info["height"], image_info["width"]], dtype=bool)
                instance_masks.append(m)
                class_ids.append(class_id)

        # 将实例掩码打包到数组中
        if class_ids:
            mask = np.stack(instance_masks, axis=2).astype(np.bool)
            class_ids = np.array(class_ids, dtype=np.int32)
            return mask, class_ids
        else:
            # 调用超级类返回空掩码
            return super(CocoDataset, self).load_mask(image_id)

    def image_reference(self, image_id):
        """返回Coco网站上的图片链接."""
        info = self.image_info[image_id]
        if info["source"] == "coco":
            return "http://cocodataset.org/#explore?id={}".format(info["id"])
        else:
            super(CocoDataset, self).image_reference(image_id)

    # 以下两个函数来自pycocotools,只做了一些更改。
    def annToRLE(self, ann, height, width):
        """
        转换注释,可以是多边形,未压缩的RLE到RLE。
        :return: 二进制掩膜 (numpy 2D array)
        """
        segm = ann['segmentation']
        if isinstance(segm, list):
            # 多边形——一个物体可能由多个部分组成。
            # 我们将所有部分合并成一个mask rle代码
            rles = maskUtils.frPyObjects(segm, height, width)
            rle = maskUtils.merge(rles)
        elif isinstance(segm['counts'], list):
            # 未压缩的RLE
            rle = maskUtils.frPyObjects(segm, height, width)
        else:
            # rle
            rle = ann['segmentation']
        return rle

    def annToMask(self, ann, height, width):
        """
        将可以是多边形、未压缩的rle或rle的注释转换为二进制掩码。
        :return: 二进制掩膜 (numpy 2D array)
        """
        rle = self.annToRLE(ann, height, width)
        m = maskUtils.decode(rle)
        return m


############################################################
#  COCO 评估
############################################################

def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks):
    """以 http://cocodataset.org/#format 排列结果以匹配coco规范
    """
    # 如果没有结果,则返回空列表
    if rois is None:
        return []

    results = []
    for image_id in image_ids:
        # 循环检测
        for i in range(rois.shape[0]):
            class_id = class_ids[i]
            score = scores[i]
            bbox = np.around(rois[i], 1)
            mask = masks[:, :, i]

            result = {
                "image_id": image_id,
                "category_id": dataset.get_source_class_id(class_id, "coco"),
                "bbox": [bbox[1], bbox[0], bbox[3] - bbox[1], bbox[2] - bbox[0]],
                "score": score,
                "segmentation": maskUtils.encode(np.asfortranarray(mask))
            }
            results.append(result)
    return results


def evaluate_coco(model, dataset, coco, eval_type="bbox", limit=0, image_ids=None):
    """运行官方COCO评估.
    dataset: 带有有效数据的数据集对象
    eval_type: “bbox”或“segm”用于边界框或分段评估
    limit: 如果不是0,则是用于评估的图像数
    """
    # 从数据集中选取COCO图像
    image_ids = image_ids or dataset.image_ids

    # 限制为子集
    if limit:
        image_ids = image_ids[:limit]

    # 获取相应的COCO图像ID。
    coco_image_ids = [dataset.image_info[id]["id"] for id in image_ids]

    t_prediction = 0
    t_start = time.time()

    results = []
    for i, image_id in enumerate(image_ids):
        # 读取图像
        image = dataset.load_image(image_id)

        # 运行推断
        t = time.time()
        r = model.detect([image], verbose=0)[0]
        t_prediction += (time.time() - t)

        # 将结果转换为COCO格式
        # 将掩码强制转换为uint8,因为coco工具在bool上出错
        image_results = build_coco_results(dataset, coco_image_ids[i:i + 1],
                                           r["rois"], r["class_ids"],
                                           r["scores"],
                                           r["masks"].astype(np.uint8))
        results.extend(image_results)

    # 加载结果。这将使用其他属性修改结果。
    coco_results = coco.loadRes(results)

    # 评估
    cocoEval = COCOeval(coco, coco_results, eval_type)
    cocoEval.params.imgIds = coco_image_ids
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()

    print("Prediction time: {}. Average {}/image".format(
        t_prediction, t_prediction / len(image_ids)))
    print("Total time: ", time.time() - t_start)


############################################################
#  训练
############################################################


if __name__ == '__main__':
    import argparse

    # 解析命令行参数
    parser = argparse.ArgumentParser(
        description='Train Mask R-CNN on MS COCO.')
    parser.add_argument("command",
                        metavar="",
                        help="'train' or 'evaluate' on MS COCO")
    parser.add_argument('--dataset', required=True,
                        metavar="\\path\\to\\coco\\",
                        help='Directory of the MS-COCO dataset')
    parser.add_argument('--year', required=False,
                        default=DEFAULT_DATASET_YEAR,
                        metavar="",
                        help='Year of the MS-COCO dataset (2014 or 2017) (default=2014)')
    parser.add_argument('--model', required=True,
                        metavar="\\path\\to\\weights.h5",
                        help="Path to weights .h5 file or 'coco'")
    parser.add_argument('--logs', required=False,
                        default=DEFAULT_LOGS_DIR,
                        metavar="\\path\\to\\logs\\",
                        help='Logs and checkpoints directory (default=logs/)')
    parser.add_argument('--limit', required=False,
                        default=500,
                        metavar="",
                        help='Images to use for evaluation (default=500)')
    parser.add_argument('--download', required=False,
                        default=False,
                        metavar="",
                        help='Automatically download and unzip MS-COCO files (default=False)',
                        type=bool)
    args = parser.parse_args()
    print("Command: ", args.command)
    print("Model: ", args.model)
    print("Dataset: ", args.dataset)
    print("Year: ", args.year)
    print("Logs: ", args.logs)
    print("Auto Download: ", args.download)

    # 配置
    if args.command == "train":
        config = CocoConfig()
    else:
        class InferenceConfig(CocoConfig):
            # 将批处理大小设置为1,因为我们将一次对一个图像运行推理。Batch size = GPU_COUNT * IMAGES_PER_GPU
            GPU_COUNT = 1
            IMAGES_PER_GPU = 1
            DETECTION_MIN_CONFIDENCE = 0
        config = InferenceConfig()
    config.display()

    # 创建模型
    if args.command == "train":
        model = modellib.MaskRCNN(mode="training", config=config,
                                  model_dir=args.logs)
    else:
        model = modellib.MaskRCNN(mode="inference", config=config,
                                  model_dir=args.logs)

    # 选择要加载的权重文件
    if args.model.lower() == "coco":
        model_path = COCO_MODEL_PATH
    elif args.model.lower() == "last":
        # 查找上次训练的权重
        model_path = model.find_last()
    elif args.model.lower() == "imagenet":
        # 从ImageNet训练的权重开始
        model_path = model.get_imagenet_weights()
    else:
        model_path = args.model

    # 读取权重
    print("Loading weights ", model_path)
    model.load_weights(model_path, by_name=True)

    # 训练或者评估
    if args.command == "train":
        # 培训数据集。使用训练集和来自验证集的35K,如Mask RCNN论文中所述。
        dataset_train = CocoDataset()
        dataset_train.load_coco(args.dataset, "train", year=args.year, auto_download=args.download)
        # if args.year in '2014':
        #     dataset_train.load_coco(args.dataset, "valminusminival", year=args.year, auto_download=args.download)
        dataset_train.prepare()

        # 验证数据集
        dataset_val = CocoDataset()
        # val_type = "val" if args.year in '2017' else "minival"
        dataset_val.load_coco(args.dataset, "val", year=args.year, auto_download=args.download)
        dataset_val.prepare()

        # 图像增强
        # 右/左翻转50%
        augmentation = imgaug.augmenters.Fliplr(0.5)

        # *** 这个训练计划就是一个例子。更新你所需要的 ***
        

        # Training - Stage 1
        '''
        print("Training network heads")
        model.train(dataset_train, dataset_val,
                    learning_rate=config.LEARNING_RATE,
                    epochs=40,
                    layers='heads',
                    augmentation=augmentation)

        # Training - Stage 2
        # Finetune layers from ResNet stage 4 and up
        print("Fine tune Resnet stage 4 and up")
        model.train(dataset_train, dataset_val,
                    learning_rate=config.LEARNING_RATE,
                    epochs=120,
                    layers='4+',
                    augmentation=augmentation)

        # Training - Stage 3
        # Fine tune all layers
        '''
        print("Fine tune all layers")
        model.train(dataset_train, dataset_val,
                    learning_rate=config.LEARNING_RATE / 10,
                    epochs=160,
                    layers='all',
                    augmentation=augmentation)

    elif args.command == "evaluate":
        # Validation dataset
        dataset_val = CocoDataset()
        #val_type = "val" if args.year in '2017' else "minival"
        coco = dataset_val.load_coco(args.dataset, "minival", year=args.year, return_coco=True, auto_download=args.download)
        dataset_val.prepare()
        print("Running COCO evaluation on {} images.".format(args.limit))
        evaluate_coco(model, dataset_val, coco, "bbox", limit=int(args.limit))
    else:
        print("'{}' is not recognized. "
              "Use 'train' or 'evaluate'".format(args.command))

自己核对一下 不会排版

model.py里面 第2088行

改为

def load_weights(self, filepath, by_name=False, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc","mrcnn_bbox", "mrcnn_mask"]):

显存问题

语义分割 Maskrcnn 训练COCO格式数据集_第1张图片

我的解决办法是增加虚拟内存 加了40G

你可能感兴趣的:(语义分割 Maskrcnn 训练COCO格式数据集)