深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS 属于盲目搜索。
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现 DFS 算法。
深度优先遍历图算法步骤:
1. 访问顶点v;
2. 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;
3. 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
上述描述可能比较抽象,举个实例:
DFS 在访问图中某一起始顶点 v 后,由 v 出发,访问它的任一邻接顶点 w1;再从 w1 出发,访问与 w1 邻 接但还没有访问过的顶点 w2;然后再从 w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点 u 为止。
接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。重复上述过程,直到连通图中所有顶点都被访问过为止。
//深度优先遍历:
void DFSTraverse ( Graph G )
{
visited [0 .. G.vexnum-1] = false; // 初始化访问标志为未访问(false)
for ( v = 0; v < G.vexnum; v ++ )
if ( ! visited[v] ) DFS ( G, v ); // 从未被访问的顶点开始DFS
}
void DFS ( Graph G, int v )
{
visit ( v ); visited [v] = true; // 访问顶点v并作标记
for ( w = FirstAdjVex(G,v); w >= 0; w = NextAdjVex(G,v,w) )
if ( ! visited[w] ) DFS ( G, w ); // 分别从每个未访问的邻接点开始DFS
}
广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS 是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止。BFS 同样属于盲目搜索。一般用队列数据结构来辅助实现 BFS 算法。
算法步骤:
1. 首先将根节点放入队列中。
2. 从队列中取出第一个节点,并检验它是否为目标。
3. 若队列为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”。
4. 重复步骤2。
//广度优先遍历:利用队列(类似按层遍历二叉树)。
void BFSTraverse ( Graph G )
{
visited [0 .. G.vexnum-1] = false; // 初始化访问标志为未访问(false)
InitQueue ( Q );
for ( v = 0; v < G.vexnum; v++ )
if ( ! visited[v] )
{
// 从v出发广度优先搜索
visit ( v ); visited [v] = true;
EnQueue ( Q, v );
while ( ! QueueEmpty(Q) )
{
DeQueue ( Q, u );
for ( w = FirstAdjVex(G,u); w >= 0; w = NextAdjVex(G,u,w) )
if ( ! visited[w] )
{
visit ( w ); visited [w] = true;
EnQueue ( Q, w );
}
}
}
}
1.概览
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
2.算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
代码实现:
#define MAX 100000
#define VNUM 10+1 //这里没有ID为0的点,so id号范围1~10
int edge[VNUM][VNUM]={/*输入的邻接矩阵*/};
int lowcost[VNUM]={0}; //记录Vnew中每个点到V中邻接点的最短边
int addvnew[VNUM]; //标记某点是否加入Vnew
int adjecent[VNUM]={0}; //记录V中与Vnew最邻近的点
void prim(int start)
{
int sumweight=0;
int i,j,k=0;
for(i=1;i
1.概览
Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。
2.算法简单描述
1).记Graph中有v个顶点,e个边
2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边
3).将原图Graph中所有e个边按权值从小到大排序
4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中
if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中
添加这条边到图Graphnew中
图例描述:
首先第一步,我们有一张图Graph,有若干点和边
将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图
在剩下的变中寻找。我们找到了CE。这里边的权重也是5
依次类推我们找到了6,7,7,即DF,AB,BE。
下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是右:
typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph;
typedef struct node
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
}Edge;
void kruskal(MGraph G)
{
int i,j,u1,v1,sn1,sn2,k,w;
int vset[VertexNum];
int vsetE[VertexNum][VertexNum]; //辅助数组,判定两个顶点是否连通
int E[EdgeNum]; //存放所有的边
k=0; //E数组的下标从0开始
for (i=0;i %d, %d",E[j].u,E[j].v,E[j].w);
k++;
if(has(vest,sn1)&&has(vest,sn1))
{
continue;
}
else if(!has(vest,sn1)&&has(vest,sn1))
{
vest[w++] = sn1;
vestE[sn1][sn2] = vestE[sn2][sn1] = E[j].w;
}
else if(has(vest,sn1)&&!has(vest,sn1))
{
vest[w++] = sn2;
vestE[sn1][sn2] = vestE[sn2][sn1] = E[j].w;
}
else
{
vest[w++] = sn1;
vest[w++] = sn2;
vestE[sn1][sn2] = vestE[sn2][sn1] = E[j].w;
}
}
j++;
}
printf()
}
bool has(int a[],int n){...} //a[]中含有n返回ture,否则返回false