单调队列是什么呢?可以直接从问题开始来展开。
Poj 2823:
给定一个数列,从左至右输出每个长度为m的数列段内的最小数和最大数。数列长度:N <=10^6 ,m<=N
显然,如果暴力时间复杂度为O(N*m) 不超时就怪了。
我们知道,上一种算法有一个地方是重复比较了,就是在找当前的f(i)的时候,i的前面m-1个数其它在算f(i-1)的时候我们就比较过了。
当你一个个往下找时,每一次都是少一个然后多一个,如果少的不是最大值,然后再问新加进来的,看起来很省时间对吧,那么如果少了的是最大值呢?第二个最大值是什么??
那么我们能不能保存上一次的结果呢?当然主要是i的前k-1个数中的最大值了。答案是可以,这就要用到单调队列。
对于单调队列,我们这样子来定义:
1、维护区间最值
2、去除冗杂状态 如上题,区间中的两个元素a[i],a[j](假设现在再求最大值) 若 j>i且a[j]>=a[i] ,a[j]比a[i]还大而且还在后面(目前a[j]留在队列肯定比a[i]有用,因为你是往后推, 认真想! 重点)
3、保持队列单调,最大值是单调递减序列,最小值反之
4、最优选择在队首
大致过程:
1、维护队首(对于上题就是如果你已经是当前的m个之前那你就可以被删了,head++)
2、在队尾插入(每插入一个就要从队尾开始往前去除冗杂状态)
当然还有不少变形,不过大致就是这样,理解好遇到变通你也不会怕了。
为了让读者更明白一点,我举个简单的例子。
数列为:6 4 10 10 8 6 4 2 12 14
N=10,K=3;
那么我们构造一个长度为3的单调递减队列:
首先,那6和它的位置0放入队列中,我们用(6,0)表示,每一步插入元素时队列中的元素如下
插入6:(6,0);
插入4:(6,0),(4,1);
插入10:(10,2);
插入第二个10,保留后面那个:(10,3);
插入8:(10,3),(8,4);
插入6:(10,3),(8,4),(6,5);
插入4,之前的10已经超出范围所以排掉:(8,4),(6,5),(4,6);
插入2,同理:(6,5),(4,6),(2,7);
插入12:(12,8);
插入14:(14,9);
那么f(i)就是第i步时队列当中的首元素:6,6,10,10,10,10,8,6,12,14
同理,最小值也可以用单调队列来做。
如果你看懂了,那你就会发现,单调队列的时间复杂度是O(N),因为每个数只会进队和出队一次,所以这个算法的效率还是很高的。
注意:建议直接用数组模拟单调队列,因为系统自带容器不方便而且不易调试,同时,每个数只会进去一次,所以,数组绝对不会爆,空间也是S(N),优于堆或线段树等数据结构。
更重要的
单调是一种思想,当我们解决问题的时候发现有许多冗杂无用的状态时,我们可以采用单调思想,用单调队列或类似于单调队列的方法去除冗杂状态,保存我们想要的状态,
#include
#include
#include
#include
using namespace std;
struct node
{
int x,y;
}v[1010000]; //x表示值,y表示位置 可以理解为下标
int a[1010000],n,m,mx[1010000],mn[1010000];
void getmin()
{
int i,head=1,tail=0;// 默认起始位置为1 因为插入是v[++tail]故初始化为0
for(i=1;iwhile(head<=tail && v[tail].x>=a[i]) tail--;
v[++tail].x=a[i],v[tail].y=i;
// 根据题目 前m-1个先直接进入队列
}
for(;i<=n;i++)
{
while(head<=tail && v[tail].x>=a[i]) tail--;
v[++tail].x=a[i],v[tail].y=i;
while(v[head].y1) head++;
mn[i-m+1]=v[head].x;
// 道理同上,当然了 要把已经超出范围的从head开始排出
// 然后每个队首则是目前m个数的最小值
}
}
void getmax() //最大值同最小值的道理,只不过是维护的是递减队列
{
int i,head=1,tail=0;
for(i=1;iwhile(head<=tail && v[tail].x<=a[i]) tail--;
v[++tail].x=a[i],v[tail].y=i;
}
for(;i<=n;i++)
{
while(head<=tail && v[tail].x<=a[i]) tail--;
v[++tail].x=a[i],v[tail].y=i;
while(v[head].y1) head++;
mx[i-m+1]=v[head].x;
}
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)scanf("%d",&a[i]);
getmin();
getmax();
for(i=1;i<=n-m+1;i++)
{
if(i==1)printf("%d",mn[i]);
else printf(" %d",mn[i]);
}
printf("\n");
for(i=1;i<=n-m+1;i++)
{
if(i==1)printf("%d",mx[i]);
else printf(" %d",mx[i]);
}
printf("\n");
return 0;
}