- 大模型最新面试题系列:训练篇之模型监控与调试
人肉推土机
大模型最新面试题集锦大全面试人工智能pytorchAI编程语言模型
1.训练过程中需要监控哪些关键指标?如何设置报警阈值?关键指标损失函数值:包括训练损失和验证损失,反映模型在训练和验证数据上的拟合程度。准确率:分类任务中的预测正确样本占总样本的比例,评估模型的预测能力。召回率和F1值:在二分类或多分类任务中,用于更全面地评估模型性能,特别是在正负样本不均衡的情况下。学习率:监控学习率的变化,确保其处于合适的范围,避免学习率过大导致模型不稳定或过小导致训练收敛过慢
- 使用 Node.js 部署高性能应用:从入门到进阶
Echo_Wish
运维探秘让你快速入坑运维node.js
使用Node.js部署高性能应用:从入门到进阶大家好,我是你们的运维伙伴Echo_Wish。今天我们来探讨如何使用Node.js部署高性能应用。Node.js因其异步非阻塞I/O模型、高效的事件驱动架构以及强大的包管理器npm,成为了现代Web开发的重要工具。我们将从简单的应用入手,逐步深入,探索如何优化Node.js应用的性能。希望你能从中受益!一、Node.js应用的基本部署首先,我们需要一个
- 集团公司数字化转型及数据资源中心建设方案:蓝图规划、总体流程、数据模型设计、数据区定位与数据模型设计流程、基础区数据模型设计、用户标签数据模型设计、数据开发体系框架、数据统一调度管理、ETL调度平台
数智化领地
数字化转型数据治理主数据数据仓库etl数据仓库
集团公司数字化转型及数据资源中心建设方案集团公司数字化转型及数据资源中心建设方案蓝图规划数字化转型战略目标数据资源中心定位与功能整体架构与技术选型实施路径与时间表总体流程业务流程梳理与优化数据流程规划与设计技术实施步骤与要点风险评估与应对措施数据模型设计概念数据模型构建逻辑数据模型转换物理数据模型实现模型验证与优化方法数据区定位与数据模型设计流程数据区划分原则及策略各类数据区功能定义数据模型设计流
- 三维模型点云化工具V1.0使用介绍:将三维模型进行点云化生成
是刃小木啦~
pythonpyqt工业软件软件工程
三维软件绘制的三维模型导入之后,可以生成点云,用于替代实际的激光扫描过程,当然,主要是用于点云算法的测试和验证,没法真正模拟扫描的效果,因为太过于理想化了。功能介绍将三维软件绘制的三维模型变成点云,并且支持不同的点云密度。支持添加不同的噪声,高斯噪声比较柔和,随机噪声比较明显。功能视频介绍三维模型点云化工具V1.0使用介绍:将三维模型进行点云化生成,支持不同的分辨率,支持添加噪声下载地址三维模型点
- 具身智能行业
[shenhonglei]
具身觉醒:智能进化的未来之路人工智能机器人
具身智能行业综合分析资源下载-具身智能导图.xmind资源下载-具身智能导图.xmind一、行业概况定义与核心特征具身智能(EmbodiedAI)指通过物理实体(如机器人、自动驾驶设备等)与环境的动态交互,实现感知、认知和行动控制的智能系统。其核心特征是“知行合一”,强调通过实际交互提升智能水平,而非仅依赖数据训练。技术融合:结合人工智能(AI)、机器人技术、多模态大模型
- 【yolov8】模型导出----pytorch导出为onnx模型
栗子风暴
YOLOpytorch人工智能深度学习
【yolov8】模型导出一、为什么要使用yolo的导出模式二、确保安装必要的库:三、yolov8模型导出3.1不同格式配置参数3.2导出格式四、导出模型性能优化4.1使用TensorRT导出模型有什么好处?4.2导出YOLOv8模型时,如何启用INT8量化?4.3为什么输出模型时动态输入尺寸很重要?4.4优化模型性能需要考虑哪些关键的导出参数?五、问题六、疑问训练模型的最终目标是将其部署到实际应用
- DeepSeek R1+硅基流动,解决DeepSeek卡顿无法加载问题
落幕7
人工智能AI写作AI编程DeepSeek硅基流动
DeepSeeK调用卡顿加载不出,可以试试硅基流动平台调用DeepSeekR1模型硅基流动网页链接:https://cloud.siliconflow.cn/models可以白嫖14元2000W的token(双方各得2000W的token)邀请码:1pAfWLRa
- LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3
一个处女座的程序猿
NLP/LLMs成长书屋大语言模型unslothLLaMA-3LoRA
LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3-8b-Instruct-bnb-4bit模型采用alpaca数据集【instruction-input-output】实现CLI方式/GUI傻瓜可视化方式,进配置微调→参数行LoRA指令微调→模型推
- 【AGI】DeepSeek开源周:The whale is making waves!
LeeZhao@
AIGC重塑生活神器agi开源人工智能AIGC生活语言模型
DeepSeek开源周:Thewhaleismakingwaves!思维火花引言一、DeepSeek模型体系的技术演进1.通用语言模型:DeepSeek-V3系列2.推理优化模型:DeepSeek-R1系列3.多模态模型:Janus系列二、开源周三大工具库的技术解析1.FlashMLA:解码效率的极限突破(2025.02.24)2.DeepEP:MoE通信范式的重构(2025.02.25)3.De
- 【AGI】中国大模型扛把子:通义家族
LeeZhao@
AIGC重塑生活神器agi人工智能AIGC面试自然语言处理语言模型
中国大模型扛把子:通义家族引言一、通义千问的技术架构与模型谱系二、技术突破与性能优势三、开源生态与行业影响四、未来展望:从“千问时代”到通用智能五、通义家族大模型列表(1)多模态大模型(2)大语言模型结语引言在人工智能大模型领域,中国科技企业正以惊人的速度突破技术边界。阿里云推出的**通义千问(Qwen)**系列大模型,凭借其多层次的技术架构、多样化的模型生态及开源战略,已成为全球AI领域的重要标
- Bert模型学习笔记
文三路张同学
其他bert学习深度学习
Bert模型学习笔记Fromhttps://www.bilibili.com/video/BV1Ey4y1874yemmm讲实话这个视频太简单了,不建议看。可以看看李沐的视频:https://www.bilibili.com/video/BV1PL411M7eQ这篇文章主要是四个部分:bert的整体架构如何做预训练mlm+nsp如何微调bert(没看)代码解析(没看)Bert架构基础架构是Tran
- DeepSeek开源技术全景解析:从硬件榨取到AI民主化革命
大刘讲IT
开源人工智能
DeepSeek开源技术全景解析:从硬件榨取到AI民主化革命一、开源周核心成果概览2025年2月24日启动的"开源周"计划,DeepSeek团队连续发布三项底层技术突破:FlashMLA(2.24):动态资源调度算法,Hopper架构GPU性能榨取专家DeepEP(2.25):全球首个MoE全流程通信优化库DeepGEMM(2.26):300行代码重构矩阵计算范式三项技术构成完整技术栈,覆盖大模型
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- 百望股份全面接入DeepSeek,打造企业级AGI革新引擎
kejicaijinghui
agi人工智能microsoft
近日,百望股份宣布全面接入DeepSeek大模型,通过将DeepSeek集成至数智商业平台,为企业提供AI驱动的数据综合服务。这不仅标志着百望股份在AI技术应用领域的重大突破,更预示着企业财税数字化转型即将迎来奇点。 五大场景升级,打造智能化产品矩阵 作为港股财税数字化解决方案第一股,百望股份凭借在企业服务领域的深厚积累,已成功为超过2000家大型企业集团、2300万家成长型企业提供全方位的数
- Bert学习笔记
缓释多巴胺。
大模型相关知识语言模型bert
一、Bert架构BERT使用了双向的TransformerGPT使用从左到右的单向信息ELMo把单独训练的从左到右及从右到左的LSTM模型进行合并二、Bert预训练任务2.1遮蔽语言模型MLM任务:随机屏蔽(masking)部分输入token,然后只预测那些被屏蔽的token。问题:预训练任务与微调任务不一致原因:在finetuning期间从未看到[MASK]token,预训练和finetunin
- 【项目实战】Spring AI集成DeepSeek实战指南(硅基流动平台版)
zxg45
AI大模型spring人工智能javadeepseek硅基流动AI大模型
SpringAI集成DeepSeek实战指南(硅基流动平台版)本文手把手教你通过SpringAI框架集成国产大模型DeepSeek,结合硅基流动平台实现智能对话功能。本方案支持普通对话和流式响应两种模式,完整代码已通过测试,可直接用于生产环境。一、环境准备开发工具JDK17+Maven3.9+SpringBoot3.2.x+(推荐3.3.0)硅基流动平台配置登录硅基流动官网,新用户赠送2000万t
- Windows零门槛部署DeepSeek大模型:Ollama+7B参数模型本地推理全攻略
zxg45
AI大模型deepseek硅基流动AI大模型
一、为什么选择Ollama+DeepSeek组合?1.1DeepSeek模型的三大核心优势中文语境霸主:在C-Eval榜单中,7B参数版本以82.3%准确率超越Llama2-13B6硬件友好:Int4量化后仅需5.2GB存储空间,GTX1060即可运行多模态扩展:支持与StableDiffusion联动生成图文报告1.2Ollama的颠覆性价值相较于传统部署方式,Ollama带来三大突破:开箱即用
- 【AI大模型】 硅基流动-流畅调用DeepSeek模型
zxg45
AI大模型DeepSeekdeepseek硅基流动AI大模型
DeepSeek官方接口DeepSeek官方地址目前注册登录已经不送10元余额了,暂时也不能充值,余额用完就无法调用接口了。下面为大家介绍最强平替产品硅基流动作为集合顶尖大模型的一站式云服务平台,SiliconCloud致力于为开发者提供更快、更全面、体验更丝滑的模型API,助力开发者和企业聚焦产品创新,无须担心产品大规模推广所带来的高昂算力成本。包含华为云部署的满血版DeepSeek,支持dee
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- 智能录音工牌如何应用在员工培训效果评估上?
DuDuTalk
人工智能录音设备语音分析自然语言处理语音识别
在数字化转型加速的今天,企业对员工培训效果的重视程度日益增加。为了确保培训能够切实提升员工的工作能力和效率,许多公司开始探索新的技术和方法来优化这一过程。智能录音工牌作为新兴的技术解决方案之一,正逐渐成为评估员工培训效果的理想选择。本文将深入探讨智能录音工牌如何助力企业更精准地衡量培训成效,并推动员工技能持续进步。1、真实场景数据收集,构建全面评估体系智能录音工牌能够在员工与客户互动的过程中实时录
- 深入探究LLamaFactory推理DeepSeek蒸馏模型时无法展示<think>思考过程的问题
羊城迷鹿
DeepSeekLLama-Factory思维链
文章目录问题背景初始测试与问题发现LLaMAFactory测试结果对照实验:Ollama测试系统性排查与解决方案探索1.尝试更换模板2.深入研究官方文档3.自定义模板实现优化界面展示:实现思考过程的可视化实现方法参数调整影响分析实验一实验二进入大模型应用与实战专栏|查看更多专栏内容问题背景最近在本地环境中部署了DeepSeek-R1-Distill-Qwen-1.5B,即由Qwen2.5-Math
- 【踩坑日记15】safetensors_rust.SafetensorError: Error while deserializing header: HeaderTooLarge
longii11
开发语言后端
问题描述加载stabilityai/stable-diffusion-xl-base-1.0模型时,出现问题。Errorwhiledeserializingheader:HeaderTooLargeFile"/home/XXX/code/dreambooth_lora/train_dreambooth_lora_sdxl_advanced.py",line1278,inmaintext_encod
- 大语言模型对程序员行业的影响及未来发展走势分析
Hello kele
人工智能java人工智能AI编程
随着人工智能技术的快速发展,特别是大语言模型(如DeepSeek、OpenAI、Grok等)的出现,对程序员这个行业产生了深远的影响。在这篇文章中,我们将探讨这些变化,分析影响,并展望未来的发展趋势。一、当前影响1.自动化代码生成大语言模型的一个直接影响是代码自动化的能力。这些模型可以理解代码上下文,并生成功能性代码。例如,GitHubCopilot已经成为许多开发者的辅助工具,能够根据注释或部分
- RAG 检索增强生成:技术详解与应用展望
君君学姐
RAG检索增强生成
RAG检索增强生成:技术详解与应用展望一、引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了前所未有的变革。其中,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)作为一种新兴的技术框架,正逐渐成为大模型应用中的热门选择。RAG通过结合信息检索(IR)和自然语言生成(NLG)的能力,旨在提升模型在回答问题、生成文本等任务中的准确性和可靠性。本文将深
- 基于python cv 库实现读取图片像素值
我是电脑高手
python小工具python开发语言图像处理
--------在日常生活中,我们经常用简单的形容词来描述颜色,比如“红色”、“蓝色”、“绿色”等。然而,这种描述方法对于精确确定颜色是有限的,尤其是在设计、图像处理、Web开发等领域。为了更准确和科学地定义颜色,我们通常采用RGB值来表示颜色。什么是RGB值?RGB是指红色(Red)、绿色(Green)和蓝色(Blue)的组合方式,用来表示颜色。RGB是一种加色模型,也就是说,通过将红、绿、蓝三
- 【无标题】四色拓扑模型与宇宙历史重构的猜想框架
2301_81062744
拓扑学
###四色拓扑模型与宇宙历史重构的猜想框架---####**一、理论基础:四色拓扑与时空全息原理的融合**1.**宇宙背景信息的拓扑编码**-**大尺度结构网络**:将星系团映射为四色顶点,纤维状暗物质结构作为边,构建宇宙尺度平面图\(\mathcal{G}_{\text{cosmo}}=(V_{\text{galaxy}},E_{\text{filament}})\)。-**CMB极化图谱**:
- 数据结构——六度空间理论验证
FineFINE01
数据结构数据结构图论
一、实验项目要求1.输入格式:多组数据输入,每组数据m+1行,第一行有两个数字,n和m,代表着n个人和m组朋友的关系,n个人的编号为1到n,第二行到第m+1行每行包括两个数字a和b,代表着两个人互相认识。输出格式:对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:百分比%”。二、理论分析六度空间理论的数学模型属于图结构,我们把六
- 电商智能客服实战(三)-需求感知模块具体实现
power-辰南
企业级AI项目实战人工智能NERNLU自然语言AIAGENT
电商智能客服实战(一)—概要设计电商智能客服实战(二)需求感知模块模型微调实现一、整体架构设计1.1模块定位需求感知模块作为智能客服系统的前端处理单元,负责对用户输入进行多维度解析,输出结构化语义理解结果,为下游决策引擎提供数据支撑。1.2核心流程图用户输入需求感知模块情感分析NLU意图识别NER实体识别参数提取规划模块AutoGPT生成步骤规则引擎匹配反馈集成工具模块订单查询API工单API知识
- 自己的网页加一个搜索框,调用deepseek的API
Lkkkkkkkcy
javavue
一切源于一个学习黑马程序员视频的突发奇想在网页悬浮一个搜索按钮,点击可以实现调用deepseek文本模型回答你的问题前端实现前端使用vue实现的首先是整体页面:AIWidget.vue搜索{{item}}暂无搜索结果import{ref,watch}from"vue";import{Search}from"@element-plus/icons-vue";import{ElMessage}from
- 大模型驱动的智能代码生成系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型驱动的智能代码生成系统关键词大模型智能代码生成自然语言处理计算机视觉系统设计与实现摘要本文深入探讨了基于大模型的智能代码生成系统的构建与实现。首先,我们分析了智能代码生成的背景与意义,随后介绍了大模型的基本原理及其在代码生成中的潜力。接着,我们详细阐述了智能代码生成系统的设计与实现过程,包括系统需求分析、架构设计、模型集成与优化等方面。随后,本文通过自然语言处理、计算机视觉和代码生成应用,展
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs