Elasticsearch(GEO)数据写入和空间检索
Elasticsearch简介
什么是 Elasticsearch?
Elasticsearch 是一个开源的分布式 RESTful搜索和分析引擎,能够解决越来越多不同的应用场景。
本文内容
本文主要是介绍了ES GEO数据写入和空间检索,ES版本为7.3.1
数据准备
Qgis使用渔网工具,对范围进行切割,得到网格的Geojson
新建索引设置映射
def set_mapping(es,index_name="content_engine",doc_type_name="en",my_mapping={}):
# ignore 404 and 400
es.indices.delete(index=index_name, ignore=[400, 404])
print("delete_index")
# ignore 400 cause by IndexAlreadyExistsException when creating an index
my_mapping = {
"properties": {
"location": {"type": "geo_shape"},
"id": {"type": "long"}
}
}
create_index = es.indices.create(index=index_name)
mapping_index = es.indices.put_mapping(index=index_name, doc_type=doc_type_name, body=my_mapping, include_type_name=True)
print("create_index")
if create_index["acknowledged"] is not True or mapping_index["acknowledged"] is not True:
print("Index creation failed...")
数据插入
使用multiprocessing和elasticsearch.helpers.bulk进行数据写入,每一万条为一组写入,剩下的为一组,然后多线程写入。分别写入4731254条点和面数据。写入时候使用多核,ssd,合适的批量数据可以有效加快写入速度,通过这些手段可以在三分钟左右写入四百多万的点或者面数据。
def mp_worker(features):
count = 0
es = Elasticsearch(hosts=[ip], timeout=5000)
success, _ = bulk(es,features, index=index_name, raise_on_error=True)
count += success
return count
def mp_handler(input_file, index_name, doc_type_name="en"):
with open(input_file, 'rb') as f:
data = json.load(f)
features = data["features"]
del data
act=[]
i=0
count=0
actions = []
for feature in features:
action = {
"_index": index_name,
"_type": doc_type_name,
"_source": {
"id": feature["properties"]["id"],
"location": {
"type": "polygon",
"coordinates": feature["geometry"]["coordinates"]
}
}
}
i=i+1
actions.append(action)
if (i == 9500):
act.append(actions)
count=count+i
i = 0
actions = []
if i!=0:
act.append(actions)
count = count + i
del features
print('read all %s data ' % count)
p = multiprocessing.Pool(4)
i=0
for result in p.imap(mp_worker, act):
i=i+result
print('write all %s data ' % i)
GEO(point)查询距离nkm附近的点和范围选择
from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
starttime = time.time()
_index = "gis_point"
_doc_type = "20190824"
ip = "127.0.0.1:9200"
# 附近nkm 选择
_body = {
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "9km",
"location": {
"lat": 18.1098857850465471,
"lon": 109.1271036098896730
}
}
}
}
}
}
# 范围选择
# _body={
# "query": {
# "geo_bounding_box": {
# "location": {
# "top_left": {
# "lat": 18.4748659238899933,
# "lon": 109.0007435371629470
# },
# "bottom_right": {
# "lat": 18.1098857850465471,
# "lon": 105.1271036098896730
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = scan(es, query=_body, scroll="10m", index=_index, timeout="10m")
for resp in scanResp:
print(resp)
endtime = time.time()
print(endtime - starttime)
GEO(shape)范围选择
from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
starttime = time.time()
_index = "gis"
_doc_type = "20190823"
ip = "127.0.0.1:9200"
# envelope format, [[minlon,maxlat],[maxlon,minlat]]
_body = {
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_shape": {
"location": {
"shape": {
"type": "envelope",
"coordinates": [[108.987103609889, 18.474865923889993], [109.003537162947, 18.40988578504]]
},
"relation": "within"
}
}
}
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = scan(es, query=_body, scroll="1m", index=_index, timeout="1m")
for resp in scanResp:
print(resp)
endtime = time.time()
print(endtime - starttime)
GEO(point)距离聚合
from elasticsearch import Elasticsearch
import time
starttime = time.time()
_index = "gis_point"
_doc_type = "20190824"
ip = "127.0.0.1:9200"
# 距离聚合
_body = {
"aggs" : {
"rings_around_amsterdam" : {
"geo_distance" : {
"field" : "location",
"origin" : "18.1098857850465471,109.1271036098896730",
"ranges" : [
{ "to" : 100000 },
{ "from" : 100000, "to" : 300000 },
{ "from" : 300000 }
]
}
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search( body=_body, index=_index)
for i in scanResp['aggregations']['rings_around_amsterdam']['buckets']:
print(i)
endtime = time.time()
print(endtime - starttime)
中心点聚合
_body ={
"aggs" : {
"centroid" : {
"geo_centroid" : {
"field" : "location"
}
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search( body=_body, index=_index)
print(scanResp['aggregations'])
范围聚合
_body = {
"aggs": {
"viewport": {
"geo_bounds": {
"field": "location"
}
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
print(scanResp['aggregations']['viewport'])
geohash聚合
##低精度聚合,precision代表geohash长度
_body = {
"aggregations": {
"large-grid": {
"geohash_grid": {
"field": "location",
"precision": 3
}
}
}
}
# 高精度聚合,范围聚合以及geohash聚合
# _body = {
# "aggregations": {
# "zoomed-in": {
# "filter": {
# "geo_bounding_box": {
# "location": {
# "top_left": "18.4748659238899933,109.0007435371629470",
# "bottom_right": "18.4698857850465471,108.9971036098896730"
# }
# }
# },
# "aggregations": {
# "zoom1": {
# "geohash_grid": {
# "field": "location",
# "precision": 7
# }
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
for i in scanResp['aggregations']['large-grid']['buckets']:
print(i)
#for i in scanResp['aggregations']['zoomed-in']['zoom1']['buckets']:
# print(i)
切片聚合
# 低精度切片聚合,precision代表级别
_body = {
"aggregations": {
"large-grid": {
"geotile_grid": {
"field": "location",
"precision": 8
}
}
}
}
# 高精度切片聚合,范围聚合以切片聚合
# _body={
# "aggregations" : {
# "zoomed-in" : {
# "filter" : {
# "geo_bounding_box" : {
# "location" : {
# "top_left": "18.4748659238899933,109.0007435371629470",
# "bottom_right": "18.4698857850465471,108.9991036098896730"
# }
# }
# },
# "aggregations":{
# "zoom1":{
# "geotile_grid" : {
# "field": "location",
# "precision": 18
# }
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
for i in scanResp['aggregations']['large-grid']['buckets']:
print(i)
# for i in scanResp['aggregations']['zoomed-in']['zoom1']['buckets']:
# print(i)