在将可视化过程之前,为了方便理解,对之中设计的一些概念做一个简要介绍。
graph定义了computation,它不计算任何东西,不包含任何值,只是定义了你在代码中指定的操作。关于graph的官方文档地址:tf.Graph。若不建立graph,TensorFlow在加载库的时候会地创建图,并且将这个图指定为默认图。可以通过使用tf.get_default_graph()函数获得默认图的句柄。在大多数的TensorFlow程序中,都只是用默认图(graph)来处理。不过,当你定义的多个模型没有相互内在的依赖的情况下,创建多个图的时候很有用。下面,我们一个变量和三个操作定义一个图形:==variable==返回变量的当前值。 ==initialize==将42的初始值赋给那个变量。 ==assign==给该变量赋值13的新值。
#Defining the Graph
graph = tf.Graph()
with graph.as_default():
variable = tf.Variable(42, name='foo')
initialize = tf.global_variables_initializer()
assign = variable.assign(13)
Session会话允许执行graph或graph的一部分。它为此分配资源(在一台或多台机器上)并保存中间结果和变量的实际值。要运行上面三个定义的操作中的任何一个时,我们需要为该graph创建一个会话Session。 因此会话Session需要分配内存来存储变量的当前值。
#Running Computations in a Session
with tf.Session(graph=graph) as sess:
sess.run(initialize)
sess.run(assign)
print(sess.run(variable))
# Output: 13
使用最基础的识别手写字体的案例,建立一个简单的神经网络,让大家了解如何使用Tensorboard。可以从github获得源码。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
max_step = 1000 # 最大迭代次数
learning_rate = 0.001 # 学习率
dropout = 0.9 # dropout时随机保留神经元的比例
data_dir = os.path.join('data', 'mnist')# 样本数据存储的路径
if not os.path.exists('log'):
os.mkdir('log')
log_dir = 'log' # 输出日志保存的路径
3.接着加载数据,下载数据是直接调用了tensorflow提供的函数read_data_sets,输入两个参数,第一个是下载到数据存储的路径,第二个one_hot表示是否要将类别标签进行独热编码。它首先回去找制定目录下有没有这个数据文件,没有的话才去下载,有的话就直接读取。所以第一次执行这个命令,速度会比较慢。
mnist = input_data.read_data_sets(data_dir,one_hot=True)
sess = tf.InteractiveSession()
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)
def weight_variable(shape):
"""Create a weight variable with appropriate initialization."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
创建初始换偏执项b的方法,生成大小为传入参数shape的常数0.1,并将其转换成tensorflow的variable并返回
def bias_variable(shape):
"""Create a bias variable with appropriate initialization."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
# 计算参数的均值,并使用tf.summary.scaler记录
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
# 计算参数的标准差
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
# 使用tf.summary.scaler记录记录下标准差,最大值,最小值
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
# 用直方图记录参数的分布
tf.summary.histogram('histogram', var)
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
"""Reusable code for making a simple neural net layer.
It does a matrix multiply, bias add, and then uses relu to nonlinearize.
It also sets up name scoping so that the resultant graph is easy to read,
and adds a number of summary ops.
"""
# 设置命名空间
with tf.name_scope(layer_name):
# 调用之前的方法初始化权重w,并且调用参数信息的记录方法,记录w的信息
with tf.name_scope('weights'):
weights = weight_variable([input_dim, output_dim])
variable_summaries(weights)
# 调用之前的方法初始化权重b,并且调用参数信息的记录方法,记录b的信息
with tf.name_scope('biases'):
biases = bias_variable([output_dim])
variable_summaries(biases)
# 执行wx+b的线性计算,并且用直方图记录下来
with tf.name_scope('linear_compute'):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram('linear', preactivate)
# 将线性输出经过激励函数,并将输出也用直方图记录下来
activations = act(preactivate, name='activation')
tf.summary.histogram('activations', activations)
# 返回激励层的最终输出
return activations
调用隐层创建函数创建一个隐藏层:输入的维度是特征的维度784,神经元个数是500,也就是输出的维度。
hidden1 = nn_layer(x, 784, 500, 'layer1')
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probability', keep_prob)
dropped = tf.nn.dropout(hidden1, keep_prob)
y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
使用tf.nn.softmax_cross_entropy_with_logits来计算softmax并计算交叉熵损失,并且求均值作为最终的损失值。
with tf.name_scope('loss'):
# 计算交叉熵损失(每个样本都会有一个损失)
diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
with tf.name_scope('total'):
# 计算所有样本交叉熵损失的均值
cross_entropy = tf.reduce_mean(diff)
tf.summary.scalar('loss', cross_entropy)
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(
cross_entropy)
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
# 分别将预测和真实的标签中取出最大值的索引,弱相同则返回1(true),不同则返回0(false)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope('accuracy'):
# 求均值即为准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
将所有的summaries合并,并且将它们写到之前定义的log_dir路径
# summaries合并
merged = tf.summary.merge_all()
# 写到指定的磁盘路径中
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(log_dir + '/test')
# 运行初始化所有变量
tf.global_variables_initializer().run()
def feed_dict(train):
"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
if train:
xs, ys = mnist.train.next_batch(100)
k = dropout
else:
xs, ys = mnist.test.images, mnist.test.labels
k = 1.0
return {x: xs, y_: ys, keep_prob: k}
for i in range(max_steps):
if i % 10 == 0: # 记录测试集的summary与accuracy
summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
test_writer.add_summary(summary, i)
print('Accuracy at step %s: %s' % (i, acc))
else: # 记录训练集的summary
if i % 100 == 99: # Record execution stats
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary, _ = sess.run([merged, train_step],
feed_dict=feed_dict(True),
options=run_options,
run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
train_writer.add_summary(summary, i)
print('Adding run metadata for', i)
else: # Record a summary
summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
train_writer.add_summary(summary, i)
train_writer.close()
test_writer.close()
tensorboard --logdir='log'
执行命令之后会出现一条信息,上面有网址,将网址在浏览器中打开就可以看到我们定义的可视化信息了。可视化后的展示详情见GitHub中README部分。
[1] github代码链接
<个人网页blog已经上线,一大波干货即将来袭:https://faiculty.com/>
/* 版权声明:公开学习资源,只供线上学习,不可转载,如需转载请联系本人 .*/