本文记录tensorflow搭建简单神经网络,并进行模块化处理,目的在于总结并提取简单神经网络搭建的基本思想和方法,提炼核心结构和元素,从而能够移植到日后深入学习中去。
forward.py
用于构建网络图结构,具体分为以下几步: forward()主方法
– 设计网络层数和维度get_weight()
– 传入维度和正则化信息,生成符合要求的weightget_bias()
– 传入维度信息,生成符合要求的biasimport tensorflow as tf
# 主方法,定义前向传播网络结构
def forward(x, regularizer):
w =
b =
y =
return y
# 获取权重变量
def get_weight(shape, regularizer=None):
"""
传入指定的shape和regularizer(lambda)
返回tensorflow的Variable类型变量,用于优化weight
"""
w = tf.Variable()
if regularizer:
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
# 获取偏置变量
def get_bias(shape):
"""
传入指定的shape
返回tensorflow的Variable类型变量,用于优化bias
"""
b = tf.Variable( )
return b
backward.py
用于构建网络图结构,具体分为以下几步: STEPS
:总训练轮数BATCH_SIZE
:每batch训练样本数LEARNING_RATE_BASE
:学习率初值,作为指数衰减学习率的初始值LEARNING_RATE_DECAY
:学习率衰减基数,作为指数衰减项的基底REGULARIZER
:正则化强度 λ λ backward()主方法
: import tensorflow as tf
# 定义各类常量
STEPS = 40000
BATCH_SIZE = 30
LEARNING_RATE_BASE = 0.001
LEARNING_RATE_DECAY = 0.999
REGULARIZER = 0.01
CYCLE_OBSERVED = 2000
def backward():
# 定义占位符,其中x代表训练数据特征,y_代表训练数据标签
x = tf.placeholder( )
y_ = tf.placeholder( )
# 根据forward模块定义网络输出预测值操作y
y = forward.forward(x, REGULARIZER)
# 定义全局计数器,用于对学习率/滑动平均的控制
global_step = tf.Variable(0, trainable=False)
# (选其一)
# 最小二乘损失函数,一般用于二分类或者回归分析
loss_mse = tf.reduce_mean(tf.square(y_ - y))
loss = loss_mse + tf.add_n(tf.get_collection('losses'))
# 交叉熵损失函数,用于多分类
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
# 定义指数衰减学习率
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
train_set_count / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True
)
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=global_step)
# 定义参数的滑动平均,也需要用到全局计数器(可选)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
# 依赖控制,即train_step和ema_op操作完成后进行后续操作
# 此处使用no_op方法,紧紧将前两个操作打包称作'train'
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
# 开启会话
with tf.Session() as sess:
# 全局变量初始化
init_op = tf.global_variables_initializer()
sess.run(init_op)
for i in range(STEPS):
# 自定义batch操作
sess.run(train_step, feed_dict={})
# 每训练CYCLE_OBSERVED轮数,打印训练信息
if i % CYCLE_OBSERVED == 0:
print()
if __name__ == '__main__':
backward()
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/7/26 09:15
# @Author : zhoujl
# @Site :
# @File : forward.py
# @Software: PyCharm
import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER_1_NODE = 500
def forward(x, regularizer):
w1 = get_weight(shape=[INPUT_NODE, LAYER_1_NODE], regularizer=regularizer)
b1 = get_bias(shape=[LAYER_1_NODE])
y1 = tf.nn.relu(tf.matmul(x, w1) + b1)
w2 = get_weight(shape=[LAYER_1_NODE, OUTPUT_NODE], regularizer=regularizer)
b2 = get_bias(shape=[OUTPUT_NODE])
y = tf.matmul(y1, w2) + b2
return y
def get_weight(shape, regularizer=None):
w = tf.Variable(tf.truncated_normal(shape=shape, stddev=0.1))
if regularizer:
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
def get_bias(shape):
b = tf.Variable(tf.constant(0.01, shape=shape))
return b
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/7/26 09:29
# @Author : zhoujl
# @Site :
# @File : backward.py
# @Software: PyCharm
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import forward
STEPS = 30000
LOG_CYCLE = 1000
BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.001
LEARNING_RATE_DECAY = 0.999
REGULARIZER = 0.0001
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = './model/'
MODEL_NAME = 'mnist_model'
def backward(mnist):
x = tf.placeholder(tf.float32, shape=[None, forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, shape=[None, forward.OUTPUT_NODE])
y = forward.forward(x, REGULARIZER)
global_step = tf.Variable(0, trainable=False)
# sparse_softmax_cross_entropy_with_logits方法,
# logits.shape=(BATCH_SIZE, 10), labels.shape=(BATCH_SIZE),且labels必须为int
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
# 训练集的样本数量
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True
)
# 此处global_step真正成为全局计数器
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
# 等待train_step和ema_op操作结束之后, 再进行下一操作
# 此处下一步无实际操作,仅将两者重新命名
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
for i in range(STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_val = sess.run([train_op, loss], feed_dict={x: xs, y_: ys})
if i % LOG_CYCLE == 0:
print('Iter {}, loss is {}'.format(i, loss_val))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
if __name__ == '__main__':
mnist = input_data.read_data_sets('./data/', one_hot=True)
backward(mnist)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/7/26 10:31
# @Author : zhoujl
# @Site :
# @File : evaluation.py
# @Software: PyCharm
import os
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import forward
import backward
def evaluate(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, shape=[None, forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, shape=[None, forward.OUTPUT_NODE])
# 测试准确率阶段不需要正则化
y = forward.forward(x, None)
# 读取模型文件中滑动平均参数的影子值
ema = tf.train.ExponentialMovingAverage(backward.MOVING_AVERAGE_DECAY)
saver = tf.train.Saver(ema.variables_to_restore())
# 计算准确率
correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
# 根据文件名提取global_step值
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
# 达到训练最大值,跳出循环
accuracy_score = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
print('Iter {}, test accuracy is {}'.format(global_step, accuracy_score))
else:
print('No checkpoint file found!')
time.sleep(5)
def main():
mnist = input_data.read_data_sets('./data/', one_hot=True)
evaluate(mnist)
if __name__ == '__main__':
main()