详解多分类模型的Micro-F1/Precision/Recall计算过程

引入

关于准确率(accuracy)、精度(precision)、查全率(recall)、F1的计算过程,之前写过一篇文章[1]。

根据文章[1]中的公式,我们可以知道,精度(precision)、查全率(recall)、F1的计算,是针对于二分类器来说的。他们的计算,只与y_true/y_pred有关,也要求y_true/y_pred中,只含有0和1两个数。

对二分类模型来说,可以直接调用sklearn.metrics中的f1_score, precision_score, 和recall_score来进行计算。但对多分类模型来说,y_true/y_pred中可能会有种label(比如y_true=[1,2,3]),应该如何计算其F1/P/R值呢?

之前写过Macro准则,可以解决多分类问题中的F1计算问题。出了Macro外,还有其他的方法吗?

Micro

传统的F1计算公式[1],只适用于二分类模型。对多分类模型来说,要用Micro规则来进行F1(或者P、R)的计算。

举例来说,假设是三个类别的分类模型:

y_true=[1,2,3]
y_pred=[1,1,3]

根据P/R的计算规则[1],

  • Precision = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP/(TP+FP)
  • Recall = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP/(TP+FN)
  • F1 = 2*(Precision*Recall)/(Precision+Recall)

下面计算过程中,若除法过程中,分子分母同时为零,则最终结果也为0.

则Micro F1的计算过程如下:

(1)如下,将第1个类别设置为True(1),非第1个类别的设置为False(0),计算其P1,R1

y_true=[1,0,0]
y_pred=[1,1,0]
  • P1 = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP1/(TP1+FP1) = 1/(1+1)=0.5
  • R1 = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP1/(TP1+FN1)= 1/1 = 1.0
  • F1_1 = 2*(PrecisionRecall)/(Precision+Recall)=20.5*1.0/(0.5+1.0)=0.6666667

(2)如下,将第2个类别设置为True(1),非第2个类别的设置为False(0),计算其P2,R2

y_true=[0,1,0]
y_pred=[0,0,0]
  • P2 = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP2/(TP2+FP2) =0.0
  • R2 = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP2/(TP2+FN2)= 0.0/1=0.0
  • F1_2 = 2*(Precision*Recall)/(Precision+Recall)=0

(3)如下,将第3个类别设置为True(1),非第3个类别的设置为False(0),计算其P3,R3

y_true=[0,0,1]
y_pred=[0,0,1]
  • P3 = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP3/(TP3+FP3) = 1/1=1.0
  • R3 = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP3/(TP3+FN3)= 1/1 = 1.0
  • F1_3 = 2*(PrecisionRecall)/(Precision+Recall)=21.0*1.0/(1.0+1.0)=1.0

(4)micro规则计算P/R/F1的公式如下

  • P=(TP1+TP2+TP3)/(TP1+FP1+TP2+FP2+TP3+FP3)=(1+0+1)/(1+1+0+0+1+0)=0.6666667
  • R=(TP1+TP2+TP3)/(TP1+FN1+TP2+FN2+TP3+FN3)=(1+0+1)/(1+0+0+1+1+0)=0.6666667
  • F1 = 2*(0.6666667*0.6666667)/(0.6666667+0.6666667)=0.6666667

最后这个取平均后的得到的P值/R值,就是Micro规则下的P值/R值。

对这个3类别模型来说,它的F1就是0.6666667。

sklearn计算程序(micro)

下面是使用sklearn直接计算多类别F1/P/R的程序,将接口中的average参数配置为’micro’即可。

from sklearn.metrics import f1_score, precision_score, recall_score

y_true=[1,2,3]
y_pred=[1,1,3]

f1 = f1_score( y_true, y_pred, average='micro' )
p = precision_score(y_true, y_pred, average='micro')
r = recall_score(y_true, y_pred, average='micro')

print(f1, p, r)
# output: 0.666666666667 0.666666666667 0.666666666667

可见,输出的P/R/F1值,都和上面我们手动计算的结果一致。

sklearn中macro-F1源码静态分析

(1)找到第三方库所在的位置
先利用如下Python代码找到sklearn源码位置。我的位置在/root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn

import sklearn, os
path = os.path.dirname(sklearn.__file__)

(2)找到要调试的源码位置

我们调试源码的目的,就是想看看f1_score()计算的过程,所以应该调试f1_score的源码。

问题是怎么找到f1_score()的源码呢?

sklearn的api文档(https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score)中,都在“[source]”中给出了源码链接。

通过这个“[source]”的链接(https://github.com/scikit-learn/scikit-learn/blob/b7b4d3e2f/sklearn/metrics/classification.py#L950),可以发现,我们要调试的源码,位于sklearn/metrics/classification.py

(3)分析classification.py中的F1计算函数f1_score()

主要是调用了计算F值的函数fbeta_score(),并将beta设置为1,就是计算F1值。fbeta_score()中最重要的函数是[precision_recall_fscore_support()](https://github.com/scikit-learn/scikit-learn/blob/b7b4d3e2f1a65bcb6d40431d3b61ed1d563c9dab/sklearn/metrics/classification.py#L1263),该函数的核心逻辑如下:

#参数解释:
#y_true:真实值
#y_pred:预测值
#beta=1.0:默认计算F1值
#其他参数这里用不到
def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None,
                                    pos_label=1, average=None,
                                    warn_for=('precision', 'recall',
                                              'f-score'),
                                    sample_weight=None):
    # F值得beta必须大于0
    if beta <= 0:
        raise ValueError("beta should be >0 in the F-beta score")
    
    # 计算混淆矩阵
    MCM = multilabel_confusion_matrix(y_true, y_pred,
                                      sample_weight=sample_weight,
                                      labels=labels, samplewise=samplewise)
    tp_sum = MCM[:, 1, 1]
    pred_sum = tp_sum + MCM[:, 0, 1]
    true_sum = tp_sum + MCM[:, 1, 0]
    
    # 若为micro准则,则将各个类别的TP等值累加后进行计算
    # 若为micro,tp_sum/pred_sum/true_sum,最终就由一个list(各个类别自己的值)变为一个值
    if average == 'micro':
        tp_sum = np.array([tp_sum.sum()])
        pred_sum = np.array([pred_sum.sum()])
        true_sum = np.array([true_sum.sum()])

    beta2 = beta ** 2# 这里beta=1,则beta2也等于1,就是计算F1

    # 计算precision和recall
    precision = _prf_divide(tp_sum, pred_sum,
                            'precision', 'predicted', average, warn_for)
    recall = _prf_divide(tp_sum, true_sum,
                         'recall', 'true', average, warn_for)

    # 计算f_score, 
    denom = beta2 * precision + recall
    denom[denom == 0.] = 1  # avoid division by 0
    f_score = (1 + beta2) * precision * recall / denom

    # 如果考虑weight,则需要设置weights变量(后面函数中会用到)
    if average == 'weighted':
        weights = true_sum
        if weights.sum() == 0:
            return 0, 0, 0, None
    elif average == 'samples':
        weights = sample_weight
    else:
        weights = None

    # macro/micro都会运行到这里
    if average is not None:
        assert average != 'binary' or len(precision) == 1
        # 把各个类别的precision取平均,作为多类别的precision
        precision = np.average(precision, weights=weights)
        # 把各个类别的recall取平均,作为多类别的recall
        recall = np.average(recall, weights=weights)
        # 把各个类别的f_score取平均,作为多类别的f_score
        f_score = np.average(f_score, weights=weights)
        true_sum = None  # return no support

    return precision, recall, f_score, true_sum

因为有if average == 'micro'中的逻辑,会将各个类别计算得到的tp_sum/pred_sum/true_sum这样一个多个值的list,转换为单个值的list。

所以,后续计算precisionrecall时,若为’micro’,则precisionrecall是单个值(正好是上面讲到的对P/R值计算取sum的过程)。

否则(macro时),precisionrecall也是各个类别计算得到的多个值的list。

总结

注意区别Macro与Micro规则。

参考

  • [1] 理解准确率(accuracy)、精度(precision)、查全率(recall)、F1. https://blog.csdn.net/ybdesire/article/details/53613628
  • [2] 如何动态调试Python的第三方库. https://blog.csdn.net/ybdesire/article/details/54649211

你可能感兴趣的:(Python,Machine,Learning,源码分析)