- 机器学习西瓜书笔记1
糊了胡
机器学习机器学习笔记人工智能
第一章机器学习之绪论目录第一章机器学习之绪论一、引言二、基本术语三、假设空间四、归纳偏好五、发展历程一、引言机器学习就是致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。Mitchell给出了更形式化的定义:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。二、基本术语收集一组西瓜数据,(色泽=青
- 西瓜书笔记
Moliay
ML算法
周志华老师亲讲-西瓜书全网最详尽讲解-1080p高清原版《机器学习初步》周志华机器学习(西瓜书)学习笔记(持续更新)周志华《MachineLearning》学习笔记绪论基本术语数据集(dataset):一堆关于某种事物的数据的集合示例(instance)或样本(sample):每条记录是关于一个事件或对象的描述,称为一个示例或样本属性(attribute)或特征(feature):反映事件或对象在
- 西瓜书笔记4: 决策树
lagoon_lala
人工智能机器学习决策树
目录4.1基本流程决策树学习基本算法4.2划分选择4.2.1信息增益信息熵信息增益西瓜例子4.2.2增益率4.2.3基尼指数4.3剪枝处理4.3.1预剪枝4.3.2后剪枝4.4连续与缺失值4.4.1连续值处理连续属性离散化西瓜例子4.4.2缺失值处理信息增益西瓜例子4.5多变量决策树轴平行决策树斜决策树4.1基本流程决策树:样本分类可看作基于树结构,来进行决策的过程.基本流程:"分而治之"(div
- 【西瓜书笔记】8. EM算法(上)
西风瘦马1912
《机器学习》西瓜书第15期概率论机器学习EM算法极大似然估计
EM算法的引入引入EM算法的原因:概率模型有时候既含有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或者贝叶斯估计法估计模型参数。但是当模型含有隐变量时,就不能简单地使用这些估计方法。EM算法就是含有隐变量的概率模型参数的极大似然估计法。EM算法的例子《统计学习方法》例9.1(三硬币模型):假设有3枚硬币,分别记作A,B,C。这些硬币正
- 《西瓜书笔记》(1)机器学习概述
土豆洋芋山药蛋
《西瓜书》指的是周志华老师的《机器学习》著作什么是机器学习?机器学习致力于通过计算的手段,利用经验来改善系统自身性能的学科经验通常是以“数据”的形式体现,或者上一次训练的错误机器学习的本质任务是预测。学习任务的分类:若我们预测的是离散值,如西瓜是好瓜还是坏瓜,此类学习任务是分类若我们预测的是连续值,如西瓜的成熟度,此类学习任务是回归若西瓜本身没有任何标签(好的,坏的,浅色的,深色的等),我们根据潜
- 西瓜书第一二章随记
惊石
机器学习聚类算法
西瓜书笔记第一章计算机系统中,“经验”以“数据”形式存在,所以机器学习的主要内容就是关于在计算机上从数据中产生“模型”的算法。根据训练数据是否具有标记信息,分为监督学习和无监督学习,分别包含分类,回归和聚类。学习过程可以看作一个在所有假设组成的空间中进行搜索的过程。在学习过程中对某中类型假设的偏好,称为“归纳偏好”。归纳偏好——选择时的价值观。其中,奥卡姆剃刀:若有多个假设与观察一致,则选最简单的
- 读西瓜书笔记(二)模型评估与选择
謙卑
机器学习笔记机器学习recallROC过拟合验证集
读西瓜书笔记(二)模型评估与选择(一)误差与过拟合1.经验误差(empiricalerror)/训练误差(trainingerror)与泛化误差(generalizationerror)错误率(errorrate):通常我们把分类错误的样本数占样本总数的比例称为“错误率"。精度(accuracy):精度=1-错误率。即如果我们在m个样本中有a个样本分类错误,则错误率为E=a/m;相应的,1-a/m
- 机器学习笔记(第三章 线性模型)
xhy.
机器学习机器学习人工智能算法
西瓜书笔记(第3章线性模型)3.1基本形式线性模型(linearmodel)试图学得一个通过属性的线性组合来进行预测的函数,即f(x)=ω1x1+ω2x2+...+ωdxd+bf(x)=\omega_1x_1+\omega_2x_2+...+\omega_dx_d+bf(x)=ω1x1+ω2x2+...+ωdxd+b一般用向量形式写成f(x)=ωTx+bf(x)=\omega^Tx+bf(x)=ω
- 西瓜书笔记7:贝叶斯分类器
lagoon_lala
人工智能贝叶斯分类器机器学习
目录相关概率知识贝叶斯-全概率公式先验概率、后验概率、似然概率7.1贝叶斯决策论7.2极大似然估计极大似然估计公式均值方差估计公式推导概率知识复习高斯分布最大似然估计7.3朴素贝叶斯分类器朴素贝叶斯分类器的概念条件概率估计方法拉普拉斯修正7.4半朴素贝叶斯分类器ODE基本思想SPODETANAODE7.5贝叶斯网7.5.1结构三变量典型依赖关系有向分离7.5.2学习结构学习参数学习7.5.3推断吉
- 西瓜书笔记第一章 模型评估与选择
优雅一只猫
笔记机器学习人工智能经验分享数据挖掘
第一章模型的输入与评估西瓜书概念很多,由过去多次反复入门经验,先选择摘取重要概念作为笔记,不纠结其他概念,实际代码中用到再深入。机器学习关键是三步:1.构造输入2.选择数学模型(线性回归、神经网络等)3.评估输出并最小化误差(梯度下降),本章讨论模型如何选择输入数据和常见的评估指标1.输入数据选择1.留出法留出法将数据集D分为两个互斥集合,其中一个作为训练集S,另一个作为测试集T。注意,划分数据集
- 西瓜书笔记9: 聚类
lagoon_lala
人工智能聚类
目录9.1聚类任务9.2性能度量外部指标内部指标9.3距离计算有序属性的距离无序属性的距离属性距离变形9.4原型聚类k均值算法学习向量量化(LVQ)高斯混合聚类E步M步9.5密度聚类9.6层次聚类9.1聚类任务无监督学习(unsupervisedlearning)目标:揭示数据的内在性质及规律,为进一步的数据分析提供基础.聚类(clustering):将数据集中的样本划分为若干个不相交的子集.(子
- 西瓜数据集3.0_西瓜书笔记——第一章
weixin_39869043
西瓜数据集3.0西瓜数据集4.0
1.1引言1.2基本术语按照课文给的实例,关于西瓜的数据。数据集:整个所给的数据的集合称为数据集样本/示例:一个事件或者对象,这里的是一个西瓜属性/特征:事件或者对象的某方面的表现或性质,比如西瓜的色泽,根蒂,敲声属性值:属性的取值,比如色泽属性可以取青绿、乌黑属性空间/样本空间/输入空间:整个属性张成的空间,比如把上述的三个属性在一个三维坐标中表示出一个西瓜的三位空间,每一个西瓜都可以在在这个空
- 【西瓜书笔记】2. 对数几率回归
西风瘦马1912
《机器学习》西瓜书第15期
2.1对数几率回归模型指数族分布是一类分布的总称,该类分布的分布律(概率密度函数)的一般形式如下:p(y;η)=b(y)exp(ηTT(y)−a(η))=b(y)exp[η(θ)⋅T(y)−A(θ)]=b(y)exp(η(θ)⋅T(y)−A(θ))=b(y)exp(η(θ)⋅T(y)−A(θ))p(y;\eta)=b(y)\exp(\eta^{T}T(y)-a(\eta))\\=b(y)\
- 【西瓜书笔记】补充1:logistic回归及其损失函数,梯度下降推导
西风瘦马1912
《机器学习》西瓜书第15期逻辑回归随机梯度下降最大似然机器学习
Logistic回归理论知识补充建模流程假设我们建立一个二分类模型。假设有两个人A、B在争论如何对一个新样本xxx进行0-1二分类,他们两个分别对新样本进行打分,如果A的分数大于B的分数,则样本被预测为1,反之则被预测为0。假设两人的打分分数可以通过线性回归进行预测建模y1=θ1x+ϵ1,ϵ1∼N1(0,δ)y2=θ2x+ϵ2,ϵ2∼N2(0,δ)\begin{aligned}&y_{1}=\th
- 气象类Python编程实战案例项目汇总
qazwsxpy
气象python数据挖掘数据分析能源街景地图
目录1.气象数据科学语言教程(1)Python基础(2)Numpy教程(3)Pandas教程(4)Xarray实例(5)Dask教程2.气象数据读取/数据处理/数据分析/数值计算3.气象可视化(1)Matplotlib绘图教程(2)Cartopy绘图教程(3)Metpy绘图教程(4)Basemap库教程(5)气象可视化案例4.机器学习系列教程(1)周志华《机器学习》西瓜书笔记(2)吴恩达《机器学习
- 机器学习西瓜书笔记:软间隔和支持向量回归SVR
sunMoonStar_c
机器学习机器学习支持向量机
1、首先由SVM问题(最大间隔超平面模型):所有样本都可以正确分类的最优化问题,引入软间隔SVM(允许分类错误)的最优化问题,即需要添加损失函数(样本不满足约束的程度,或者说分类错误的程度),然后最优化。这里强调一下:超平面这个回归模型如何实现分类功能:套上sign函数。损失函数要找性质好的,即凸函数,连续损失函数不要单纯只反映分类正确和错误(0/1损失函数)。而是分类正确时,损失记为0,分类错误
- 西瓜书笔记之支持向量机
OeyOew_up
机器学习机器学习
这章节的内容对于小白来说属实有点难,把我难到无法用自己的语言去做笔记。好在互联网上的大神随处可见,寻到一篇“码农场”的一篇文章,虽然他整理的不是西瓜书,而是《统计学方法》的第七章,支持向量机。但是我觉得要比西瓜书更加容易理解。反复多嚼几遍,总会有意想不到的收获!下面奉上链接,大家一起学习ba!支持向量机--码农场关于公式推导的补充
- 【西瓜书笔记】5. 软间隔与支持向量机回归
西风瘦马1912
《机器学习》西瓜书第15期支持向量机回归机器学习
5.1软间隔SVM之前我们使用的是严格线性可分的硬间隔SVM:minw,b12∥w∥2s.t.1−yi(wTxi+b)⩽0,i=1,2,…,m\begin{array}{ll}\min_{\boldsymbol{w},b}&\frac{1}{2}\|\boldsymbol{w}\|^{2}\\\text{s.t.}&1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}}
- 【西瓜书笔记】4. 支持向量机
西风瘦马1912
《机器学习》西瓜书第15期支持向量机机器学习算法
4.1超平面wTx+b=0\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}+b=0wTx+b=0法向量恒垂直于超平面和法向量方向相同的点(与w\boldsymbol{w}w夹角θ\thetaθ小于90度的向量)代入超平面方程恒大于等于0,否则恒小于等于0(与w\boldsymbol{w}w夹角θ\thetaθ大于90度的向量)法向量和位移项唯一确定一个超平面等倍缩
- 西瓜书笔记6:支持向量机
lagoon_lala
人工智能机器学习SVM
目录6.1间隔与支持向量6.2对偶问题求解w求解b6.3核函数非线性映射核函数6.4软间隔与正则化软间隔参数求解正则化6.5支持向量回归6.6核方法6.1间隔与支持向量分类学习基本想法:就是基于训练集D在样本空间中找到一个划分超平面、将不同类别的样本分开.超平面(w,b)的线性方程:$$\boldsymbol{w}^T\boldsymbol{x}+b=0\\其中\boldsymbol{w}=(w_
- 西瓜书笔记第五章-神经网络
weixin_41872340
西瓜书
chapter55.1神经元模型定义:神经网络是由具有适应性的,简单单元组成的,广泛并行互联的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反映。神经网络的基本单元是神经元模型,当一个神经元兴奋时,会向相连的神经元发送化学介质,从而改变神经元内的电位,如果某神经元的电位超过了阈值,那么就会兴奋起来(阈值就是平时所说的偏差bias)。M-P神经元模型:模型中,神经元接受其它神经元传来的
- 西瓜书笔记(第六章 支持向量机)
xhy.
机器学习支持向量机算法机器学习
西瓜书笔记(第六章支持向量机)6.1间隔与支持向量直观上看,应该去找位于两类训练样本“正中间”的划分超平面,即图6.1中红色的那个,因为该划分超平面对训练样本局部扰动的“容忍”性最好.例如,由于训练集的局限性或噪声的因素,训练集外的样本可能比图6.1中的训练样本更接近两个类的分隔界,这将使许多划分超平面出现错误,而红色的超平面受影响最小,换言之,这个划分超平面所产生的分类结果是最鲁棒的,对未见示例
- 西瓜书笔记Chapter1&2
名侦探波本
机器学习人工智能
序言南瓜书(机器学习公式详解)作者谢文睿老师在南瓜书前言中如此写到:“周志华老师的《机器学习》(西瓜书)是机器学习领域的经典入门教材之一,周老师为了使尽可能多的读者通过西瓜书对机器学习有所了解,所以在书中对部分公式的推导细节没有详述,但是这对那些想深究公式推导细节的读者来说可能“不太友好”,本书旨在对西瓜书里比较难理解的公式加以解析,以及对部分公式补充具体的推导细节。”读到这里,大家可能会疑问为啥
- 机器学习西瓜书笔记:神经网络:BP算法公式推导
sunMoonStar_c
机器学习机器学习神经网络
1、变量符号含义1、训练集D={(x⃗1,y⃗1),(x⃗2,y⃗2),...,(x⃗m,y⃗m)}D=\{(\vec{x}_1,\vec{y}_1),(\vec{x}_2,\vec{y}_2),...,(\vec{x}_m,\vec{y}_m)\}D={(x1,y1),(x2,y2),...,(xm,ym)},共m个样例2、x⃗i∈Rd,y⃗i∈Rd\vec{x}_i\in\mathbb{R}^
- 西瓜书笔记5:神经网络
lagoon_lala
人工智能神经网络
目录5.1神经元模型5.2感知机与多层网络感知机感知机模型感知机学习策略感知机学习算法多层网络5.3误差逆传播算法标准BP(误差逆传播)算法变量符号公式推导工作流程累积BP算法5.4全局最小与局部极小跳出局部极小的技术5.5其他常见神经网络5.5.1RBF网络5.5.2ART网络5.5.3SOM网络5.5.4级联相关网络5.5.5Elman网络5.5.6Boltzmann机5.6深度学习5.1神经
- 西瓜书笔记16-2:逆强化学习
lagoon_lala
人工智能人工智能逆强化学习
感谢康傲同学的深刻讨论与精彩讲解.目录逆强化学习概述强化学习与逆强化区别逆向强化学习分类学徒学习学徒学习思想相关定义算法描述学徒算法找最优策略\(\tilde{\pi}\)逆强化学习概述参考:https://zhuanlan.zhihu.com/p/26682811强化学习与逆强化区别强化学习是求累积回报期望最大时的最优策略,在求解过程中立即回报是人为给定的。人在完成具体任务时,指定回报函数的方法
- 周志华西瓜书笔记 1.2 基本术语
0ng
西瓜书笔记
我原本想着一边读一边删减一些以后好复习的,谁知这书一句废话没有,一晚上敲了个寂寞1.2基本术语关于西瓜的数据:(色泽===青绿;根蒂===蜷缩;敲声===浊响)(色泽===乌黑;根蒂===稍蜷;敲声===沉闷)(色泽===浅白;根蒂===硬挺;敲声===清脆) 一对括号内是一条记录,"===“意思是"取值为”. 一组记录的集合称为一个"数据集"(dataset),每条记录是关于一个事件或对象(
- 读西瓜书笔记(一)绪论
謙卑
笔记机器学习机器学习笔记
读西瓜书笔记(一)绪论(一)什么是机器学习机器学习致力于研究如何通过计算的手段,利用经验来改善自身的性能。机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法”,有了学习算法,我们把经验数据提供给学习算法,它就能基于这些数据产生模型,在面对新的情况时,模型就会给出相应的判断。有文献用“模型”指全局性结果(如一颗决策树),而用“模式”指局部性结果通俗的理解机器学习(买西
- 西瓜书笔记系列 - 第1章 绪论 - 1.2 基本术语
FSHelix
读书笔记机器学习
西瓜书笔记系列-目录1.2基本术语术语集见文末。因为是边读边做的笔记,且是第一次读这本书的笔记,所以除了零零散散添加的想法以外,做得有点像单纯的转述摘抄了。如这一组关于西瓜的记录:(色泽=青绿;根蒂=蜷缩;敲声=浊响),(色泽=乌黑;根蒂=稍蜷;敲声=沉闷),……这些记录是关于某一个事物的描述,称为示例或样本,它们构成的集合称为数据集。其中如"色泽"、“根蒂”、“敲声”,反映了事物在某方面的性质,
- 2、周志华西瓜书笔记:模型评估与选择
Zzzybfly
机器学习
2.1经验误差与过拟合错误率:分类错误的样本数占样本总数的比例。精度:1-错误率=精度误差:学习器的实际预测输出与样本的真实输出之间的差异。训练误差/经验误差:学习器在训练集上的误差。泛化误差:在新样本上的误差。过拟合:学习器学习能力太好导致把训练本身的特点当作所有样本都具有的特点,导致泛化能力下降。2.2评估方法通常,我们通过实验测试学习器的泛化误差来进行评估进而做出选择,以测试集的测试误差作为
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =