作为标准数据集,voc-2007 是衡量图像分类识别能力的基准。
faster-rcnn,yolo -v1, yolo-v2都以此数据集为最为演示样例,因此,有必要了解一下本数据集的组成架构。
VOC数据集共包含:训练集(5011幅),测试集(4952幅),共计9963幅图,共包含20个种类。
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor
20个类别中,后面数字代表数据集中对应的的正样本图像个数(非目标个数)。
- 训练集
aeroplane 238
bicycle 243
bird 330
boat 181
bottle 244
bus 186
car 713
cat 337
chair 445
cow 141
diningtable 200
dog 421
horse 287
motorbike 245
person 2008
pottedplant 245
sheep 96
sofa 229
train 261
tvmonitor 256
- 测试集
aeroplane 204
bicycle 239
bird 282
boat 172
bottle 212
bus 174
car 721
cat 322
chair 417
cow 127
diningtable 190
dog 418
horse 274
motorbike 222
person 2007
pottedplant 224
sheep 97
sofa 223
train 259
tvmonitor 229
可以看出,除了person数量较多,其他类别样本个数不算多,在如此小的数据集上,深度学习能获得较高的分类识别结果,足以说明深度学习的强大性能。
PASCAL VOC2012作为例子。下载地址为:点击打开链接。
下载完之后解压,可以在VOCdevkit目录下的VOC2012中看到如下的文件:
数据集的组成架构如下:
- Annotations —目标真值区域
- ImageSets —-类别标签
- JPEGImages —–图像
- SegmentationClass
- SegmentationObjec
具体结构如下:
①JPEGImages
JPEGImages文件夹中包含了PASCAL VOC所提供的所有的图片信息,包括了训练图片和测试图片。
JPEGImages 中存放原始图像,这些图像都是以“年份_编号.jpg”格式命名。图片的像素尺寸大小不一,一般为(横向图) 500*375 或(纵向图) 375*500;基本不会偏差超过100。(在之后的训练中,第一步就是将这些图片都resize到300*300或是500*500,所有原始图片不能离这个标准过远。)这些图像就是用来进行训练和测试验证的图像数据。
②Annotations
Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对应于JPEGImages文件夹中的一张图片。
xml文件的具体格式如下:(对于2007_000392.jpg)
[html]view plaincopy
对应的图片为:
③ImageSets
ImageSets 中有四个文件夹【Action】【Layout】【Main】【Segmentation】
ImageSets存放的是每一种类型的challenge对应的图像数据。
Action下存放的是人的动作(例如running、jumping等等,这也是VOC challenge的一部分)
Layout下存放的是具有人体部位的数据(人的head、hand、feet等等,这也是VOC challenge的一部分)
Main下存放的是图像物体识别的数据,总共分为20类。
Segmentation下存放的是可用于分割的数据。
分类识别只关注【Main】,它内部存储20个分类类别标签,-1表示负样本,+1为正样本
*_train.txt 训练样本集
*_val.txt 评估样本集
*_trainval.txt 训练与评估样本汇总
这些txt中的内容都差不多如下:
前面的表示图像的name,后面的1代表正样本,-1代表负样本。
_train中存放的是训练使用的数据,每一个class的train数据都有5717个。
_val中存放的是验证结果使用的数据,每一个class的val数据都有5823个。
_trainval将上面两个进行了合并,每一个class有11540个。
需要保证的是train和val两者没有交集,也就是训练数据和验证数据不能有重复,在选取训练数据的时候 ,也应该是随机产生的。