- 【ShuQiHere】《机器学习的进化史『下』:从神经网络到深度学习的飞跃》
ShuQiHere
机器学习深度学习神经网络
【ShuQiHere】引言:神经网络与深度学习的兴起在上篇文章中,我们回顾了机器学习的起源与传统模型的发展历程,如线性回归、逻辑回归和支持向量机(SVM)。然而,随着数据规模的急剧增长和计算能力的提升,传统模型在处理复杂问题时显得力不从心。在这种背景下,神经网络重新进入了研究者们的视野,并逐步演变为深度学习,成为解决复杂问题的强大工具。今天,我们将进一步探索从神经网络到深度学习的进化历程,揭示这些
- 神经网络深度学习梯度下降算法优化
海棠如醉
人工智能深度学习
【神经网络与深度学习】以最通俗易懂的角度解读[梯度下降法及其优化算法],这一篇就足够(很全很详细)_梯度下降在神经网络中的作用及概念-CSDN博客https://blog.51cto.com/u_15162069/2761936梯度下降数学原理
- 李宏毅机器学习笔记 2.回归
Simone Zeng
机器学习机器学习
最近在跟着Datawhale组队学习打卡,学习李宏毅的机器学习/深度学习的课程。课程视频:https://www.bilibili.com/video/BV1Ht411g7Ef开源内容:https://github.com/datawhalechina/leeml-notes本篇文章对应视频中的P3。另外,最近我也在学习邱锡鹏教授的《神经网络与深度学习》,会补充书上的一点内容。通过上一次课1.机器
- 深度学习路线,包括书籍和视频
jjm2002
深度学习深度学习人工智能
深度学习是一个广泛而快速发展的领域,涉及多种技术和应用。以下是一个深度学习学习路线,包括书籍和视频资源。入门阶段:理解基础知识:书籍:《深度学习》(DeepLearning)IanGoodfellow,YoshuaBengio和AaronCourville著。这是深度学习领域的权威书籍,适合初学者。书籍:《神经网络与深度学习》(NeuralNetworksandDeepLearning)Micha
- 神经网络与深度学习 Neural Networks and Deep Learning 课程笔记 第一周
林间得鹿
吴恩达深度学习系列课程笔记深度学习神经网络笔记
神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周文章目录神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周深度学习简介什么是神经网络使用神经网络进行监督学习为什么神经网络会兴起本文是吴恩达深度学习系列课程的学习笔记。深度学习简介什么是神经网络深度学习一般是指训练神经网络。那么什么是神经网络?课程以房价预测的例子来说明
- 小白初探|神经网络与深度学习
神奇的代码在哪里
人工智能深度学习神经网络人工智能外接显卡
一、学习背景由于工作的原因,需要开展人工智能相关的研究,虽然不用参与实际研发,但在项目实施过程中发现,人工智能的项目和普通程序开发项目不一样,门槛比较高,没有相关基础没法搞清楚人力、财力如何投入,很难合理管控成本以及时间。为搞清楚情况,老年博主决定一步一个脚印,好好自学。在写本文时,博主已学到一定阶段了,趁有时间,通过博文记录下来,以免遗忘。二、学习准备常年的学习告诉我们,一门学科要快速入门,主流
- 神经网络与深度学习Pytorch版 Softmax回归 笔记
砍树+c+v
深度学习神经网络pytorch人工智能python回归笔记
Softmax回归目录Softmax回归1.独热编码2.Softmax回归的网络架构是一个单层的全连接神经网络。3.Softmax回归模型概述及其在多分类问题中的应用4.Softmax运算在多分类问题中的应用及其数学原理5.小批量样本分类的矢量计算表达式6.交叉熵损失函数7.模型预测及评价8.小结Softmax回归,也称为多类逻辑回归,是一种用于解决多分类问题的机器学习算法。它与普通的logist
- 【吴恩达-神经网络与深度学习】第3周:浅层神经网络
倏然希然_
深度学习与神经网络神经网络深度学习人工智能
目录神经网络概览神经网络表示含有一个隐藏层的神经网络(双层神经网络)计算神经网络的输出多样本的向量化向量化实现的解释激活函数(Activationfunctions)一些选择激活函数的经验法则:为什么需要非线性激活函数?激活函数的导数神经网络的梯度下降法(选修)直观理解反向传播随机初始化神经网络概览右上角方括号[]里面的数字表示神经网络的层数可以把许多sigmoid单元堆叠起来形成一个神经网络:第
- 2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战
鸭鸭渗透
人工智能AIGCagi语言模型自然语言处理
目录前言01《ChatGPT驱动软件开发》内容简介02《ChatGPT原理与实战》内容简介03《神经网络与深度学习》04《AIGC重塑教育》内容简介05《通用人工智能》目录前言2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成
- Pytorch 实现强化学习策略梯度Reinforce算法
爱喝咖啡的加菲猫
强化学习强化学习神经网络pytorch
一、公式推导这里参考邱锡鹏大佬的《神经网络与深度学习》第三章进阶模型部分,链接《神经网络与深度学习》。`伪代码:二、核心代码defmain():env=gym.make('CartPole-v0')obs_n=env.observation_space.shape[0]act_n=env.action_space.nlogger.info('obs_n{},act_n{}'.format(obs_
- 基于图神经网络与深度学习的商品推荐算法
谦谦菜鸟
深度学习机器学习人工智能
传统做法现阶段局限创新方法结果相关工作目前推荐算法基于矩阵分解的推荐算法基于深度学习的推荐算法基于图神经网络的推荐算法创新点模型设计本文的核心任务是训练出一个模型LGDL模型框架嵌入层ID特征嵌入评论文本特征嵌入前向传播层关联关系提取偏好特征提取评分预测层模型优化传统做法利用深度学习方法从用户ID、评论文本等数据中提取其中所隐藏的用户物品特征,根据该特征预测用户对新物品的打分从而给出推荐是传统推荐
- 神经网络与深度学习(五)——人工神经网络和卷积神经网络
吴丞楚20012100032
姓名:吴丞楚学号:20012100032学院:竹园三号书院【嵌牛导读】简要介绍NN与CNN【嵌牛鼻子】深度学习神经网络【嵌牛提问】NN与CNN的区别有哪些人工神经网络简称神经网络(NN),是目前各种神经网络的基础,其构造是仿造生物神经网络,将神经元看成一个逻辑单元,其功能是用于对函数进行估计和近似,是一种自适应系统,通俗的讲就是具备学习能力。其作用,目前为止就了解到分类。其目的就是在圈和叉之间画出
- 学习笔记--神经网络与深度学习之卷积神经网络
qssssss79
深度学习神经网络深度学习学习
目录1.卷积1.1一维卷积1.2卷积的作用1.3卷积扩展1.4二维卷积1.5互相关2.卷积神经网络2.1用卷积代替全连接2.2卷积层2.3汇聚层(池化层)2.4卷积网络结构3.其它卷积种类3.1空洞卷积3.2转置卷积/微步卷积4典型的卷积神经网络4.1LeNet-54.2AlexNet4.3Inception4.4残差网络利用全连接前馈网络处理图像时的问题:(1)参数太多: 对于输入的10010
- 计划1
JLcucumber
1.吴恩达DL2021(强推|双字)2021版吴恩达深度学习课程Deeplearning.ai_哔哩哔哩_bilibiliPart1神经网络与深度学习(6+19+12+8)共45Part2训练、开发、测试集(14+10+11)共35Part3机器学习策略(13+11)共24Part4计算机视觉(11+14+14+(5+6))共50Part5序列模型(12+10+15)共372.经典网络模型论文ht
- [23-24 秋学期] NNDL-作业2 HBU
洛杉矶县牛肉板面
深度学习人工智能机器学习深度学习
前言:本文解决《神经网络与深度学习》-邱锡鹏第二章课后题。对于习题2-1,平方损失函数在机器学习课程中学习过,但是惭愧的讲,在完成这篇博客前我对均方误差和平方损失函数的概念还有些混淆。交叉熵损失函数我未曾了解过,只在决策树一节中学习过关于熵entropy的基本概念。借此机会弄清原理,并且尝试着学会应用它。对于习题2-12,考察对混淆矩阵的理解程度和计算。其中宏平均和微平均是我未曾学习过的概念,借此
- 【22-23 春学期】AI作业5-深度学习基础
HBU_David
AI深度学习人工智能python
人工智能、机器学习、深度学习之间的关系神经网络与深度学习的关系“深度学习”和“传统浅层学习”的区别和联系神经元、人工神经元MP模型单层感知机SLP异或问题XOR多层感知机MLP前馈神经网络FNN激活函数ActivationFunction为什么要使用激活函数?常用激活函数有哪些?均方误差和交叉熵损失函数,哪个适合于分类?哪个适合于回归?为什么?
- 神经网络与深度学习day01-基础知识
小鬼缠身、
深度学习神经网络人工智能python
今天开始新学期,然后就是每周要在这里发这周的实验报告,CSDN对不起了,你可能不情愿,但是必须要稍微容纳一下我(这个菜比)在这里吹了。第一周的基础知识训练:1、导入numpy库importnumpy2、建立一个一维数组a=[4,5,6]。输出:(1)a的类型;(2)a的各维度的大小;(3)a的第一个元素a=[4,5,6]print(type(a))print(numpy.shape(a))prin
- HBU_神经网络与深度学习 实验10 卷积神经网络:基于ResNet18网络完成图像分类任务
ZodiAc7
cnn深度学习python
目录写在前面的一些内容一、实践:基于ResNet18网络完成图像分类任务1.数据处理(1)数据集介绍(2)数据读取(3)构造Dataset类2.模型构建3.模型训练4.模型评价5.模型预测二、实验Q&A写在前面的一些内容本文为HBU_神经网络与深度学习实验(2022年秋)实验10的实验报告,此文的基本内容参照[1]Github/卷积神经网络-下.ipynb,检索时请按对应序号进行检索。本实验编程语
- Python练习题:猜数字游戏
BioVS
python开发语言
#题目来源于MOOC课程《神经网络与深度学习》,程序为自己独立编写题目:随机产生一个1-10之间的整数,并提示用户输入1-10的整数进行猜测,判断是否猜中。每次猜完后,提示“太大了”或者“太小了”,猜对之后提示“恭喜你,猜对了!”,并退出程序。当用户才出数字后,询问是否想要继续下一轮游戏,并记录显示用户已参加轮次。对应python程序:importrandomtimes=1#存放第几轮游戏,用于后
- 2023年度盘点:AIGC、AGI、GhatGPT、人工智能大模型必读书单
家有娇妻张兔兔
粉丝送书活动AIGCagi人工智能福利送书
2023年度盘点智能大模型必读书单概述好书推荐01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》04《AIGC重塑教育》05《通用人工智能》写在末尾:主页传送门:传送送书系列:送书第一期:考研必备书单送书第二期:CTF那些事儿送书第三期:数据要素安全流通送书第四期:MLOps工程实践:工具、技术与企业级应用送书第五期:Python数据挖掘:入门进阶与实用案
- 搜索与人工智能
码海串游
人工智能
前言第一:通过博弈树搜索和启发式搜索的例子了解基于搜索的通用问题求解方法第二:了解人工智能发展的历程和社会影响第三:了解机器学习的基本思想和典型应用第四:了解人工智能应用开发的基本模式内容1.博弈树与剪纸、零和博弈,极大极小策略博弈树与搜索,α与β剪枝以及著名的计算机博弈的例子2.启发式搜索启发式函数,启发式搜索过程,3.人工智能与机器学习人工智能发展历程,专家系统,机器学习,神经网络与深度学习。
- 2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型
herosunly
优质书籍推荐人工智能AIGCagi
文章目录0.前言1.《ChatGPT驱动软件开发》2.《ChatGPT原理与实战》3.《神经网络与深度学习》4.《AIGC重塑教育》5.《通用人工智能》0.前言 2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成百、上千亿的
- DL Homework 11
熬夜患者
DLHomework人工智能深度学习
目录1.被优化函数编辑(代码来源于邱锡鹏老师的神经网络与深度学习的实验)L1.pyop.py(1)SimpleBatchGD(2)Adagrad(3)RMSprop(4)Momentum(5)Adam2.被优化函数编辑3.解释不同轨迹的形成原因,并分析各个算法的优缺点(1)SimpleBatchGD(2)Adagrad(3)RMSprop(4)Momentum(5)Adam总结在展开本次作业之前,
- 2020-12-07 吴恩达-神经网络与深度学习-第三周编程练习
Vivivivi安
Github地址:https://github.com/Poissons/wuenda-Deep-Learning-And-Neural-Network-third-week-excercise.git
- 2020-12-03 吴恩达-神经网络与深度学习-第二周编程练习
Vivivivi安
最近听吴恩达老师的课,写课后作业Github地址:https://github.com/Poissons/wuenda-Deep-Learning-And-Neural-Network-second-week-excercise
- 2023年度AI盘点 AIGC|AGI|ChatGPT|人工智能大模型
雪碧有白泡泡
粉丝福利活动人工智能AIGCagi
前言「作者主页」:雪碧有白泡泡「个人网站」:雪碧的个人网站2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。文章目录前言01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》《AIGC重塑教育》05《通用人工智能》LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LL
- 年度大盘点:AIGC、AGI、GhatGPT震撼登场!揭秘人工智能大模型的奥秘与必读书单
洁洁!
externalAIGCagi人工智能
这里写目录标题前言01《ChatGPT驱动软件开发》02《ChatGPT原理与实战》03《神经网络与深度学习》04《AIGC重塑教育》05《通用人工智能》前言在2023年,人工智能领域经历了一场前所未有的大爆发,特别是在语言模型领域。新的概念和英文缩写如AIGC、AGI、GhatGPT等频繁出现,给人们带来了极大的困惑和好奇。这些突如其来的名词和缩写不仅让人摸不着头脑,还引发了对人工智能发展的种种
- 2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战
库库的里昂
杂谈人工智能AIGCagi语言模型自然语言处理
目录前言01《ChatGPT驱动软件开发》内容简介02《ChatGPT原理与实战》内容简介03《神经网络与深度学习》04《AIGC重塑教育》内容简介05《通用人工智能》目录前言2023年是人工智能大语言模型大爆发的一年,一些概念和英文缩写也在这一年里集中出现,很容易混淆,甚至把人搞懵。LLM:LargeLanguageModel,即大语言模型,旨在理解和生成人类语言。LLM的特点是规模庞大,包含成
- 循环神经网络-RNN记忆能力实验 [HBU]
洛杉矶县牛肉板面
深度学习rnn深度学习人工智能
目录一、循环神经网络二、循环神经网络的记忆能力实验三、数据集构建数据集的构建函数加载数据并进行数据划分构造Dataset类四、模型构建嵌入层SRN层五、模型训练训练指定长度的数字预测模型多组训练损失曲线展示六、模型评价参考《神经网络与深度学习》中的公式(6.50),改进SRN的循环单元,加入隐状态之间的残差连接,并重复数字求和实验。观察是否可以缓解长程依赖问题?总结参考原文章:aistudio.b
- [23-24 秋学期]NNDL 作业6 卷积 [HBU]
洛杉矶县牛肉板面
深度学习深度学习人工智能卷积神经网络
目录一、概念二、探究不同卷积核的作用后接:关于使用pycharm输出卷积图像后图片仍然不清晰的可能原因以及解决方法总结:前言:卷积常用于特征提取实验过程中注意认真体会“特征提取”,弄清楚为什么卷积能够提取特征。一、概念用自己的语言描述“卷积、卷积核、特征图、特征选择、步长、填充、感受野”。大致看了一遍邱锡鹏《神经网络与深度学习》的卷积一节。谈谈我对这些名词概念的理解(理解不足描述不准请见谅)。个人
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&