目录
设置
基于checkpoints的模型保存
通过ModelCheckpoint模块来自动保存数据
手动保存权重
整个模型保存
总体代码
模型可以在训练中或者训练完成后保存。具体文档参考:https://tensorflow.google.cn/tutorials/keras/save_and_restore_models
依赖项设置:
!pip install -q h5py pyyaml
模型建立:
from __future__ import absolute_import, division, print_function
import os
import tensorflow as tf
from tensorflow import keras
tf.__version__
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
train_labels = train_labels[:1000]
test_labels = test_labels[:1000]
train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0
# 模型创建模型
def create_model():
model = tf.keras.models.Sequential([
keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)),
keras.layers.Dropout(0.2),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy'])
return model
#创建模型
model = create_model()
model.summary()
#创建回调函数
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
save_weights_only=True, #只保存权重
verbose=1)
model = create_model()
model.fit(train_images, train_labels, epochs = 10,
validation_data = (test_images,test_labels),
callbacks = [cp_callback]) #保存模型
通过load_weight读取权重
#对全新没有训练的模型进行预测
model = create_model()
loss, acc = model.evaluate(test_images, test_labels)
print("Untrained model, accuracy: {:5.2f}%".format(100*acc)) #11.4%
#载入权重参数后的模型
model.load_weights(checkpoint_path)
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #86.2
# 保存权重
model.save_weights('./checkpoints/my_checkpoint')
#恢复模型
model = create_model()
model.load_weights('./checkpoints/my_checkpoint')
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #87.00%
基于keras的HD5文件保存整个模型所有参数,优化器参数等。
#将整个模型保存为HDF5文件
model = create_model()
model.fit(train_images, train_labels, epochs=5)
model.save('my_model.h5')
#载入一个相同的模型
new_model = keras.models.load_model('my_model.h5')
new_model.summary()
loss, acc = new_model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #86.30%
from __future__ import absolute_import, division, print_function
import os
import tensorflow as tf
from tensorflow import keras
tf.__version__
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
train_labels = train_labels[:1000]
test_labels = test_labels[:1000]
train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0
# 模型创建模型
def create_model():
model = tf.keras.models.Sequential([
keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)),
keras.layers.Dropout(0.2),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy'])
return model
#创建模型
model = create_model()
model.summary()
checkpoint_path = "training_1/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)
'''
#创建回调函数
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
save_weights_only=True, #只保存权重
verbose=1)
model = create_model()
model.fit(train_images, train_labels, epochs = 10,
validation_data = (test_images,test_labels),
callbacks = [cp_callback]) #保存模型
#对全新没有训练的模型进行预测
model = create_model()
loss, acc = model.evaluate(test_images, test_labels)
print("Untrained model, accuracy: {:5.2f}%".format(100*acc)) #11.4%
#载入权重参数后的模型
model.load_weights(checkpoint_path)
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #86.2
# 保存权重
model.save_weights('./checkpoints/my_checkpoint')
#恢复模型
model = create_model()
model.load_weights('./checkpoints/my_checkpoint')
loss,acc = model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #87.00%
'''
#将整个模型保存为HDF5文件
model = create_model()
model.fit(train_images, train_labels, epochs=5)
model.save('my_model.h5')
#载入一个相同的模型
new_model = keras.models.load_model('my_model.h5')
new_model.summary()
loss, acc = new_model.evaluate(test_images, test_labels)
print("Restored model, accuracy: {:5.2f}%".format(100*acc)) #86.30%