Python实现秒解数独

编程笼统的来说,就是个方法论,不论什么程序,都必须将问题的解决过程分解成计算机可以实现的若干个简单方法。俗话说,大道至简。对于只能明白0和1的计算机来说,就更需要细分步骤,一步一步的解决问题了。

首先来思考一下解数独的基本概念。

数独横九竖九共八十一个格子,同时又分为9个九宫格。规则很简单:需要保证每个横排和竖排以及九宫格内无相同数字。

第一种思路是对空格遍历所有数寻找结果:从第一个空格从 1 开始填开始填数,如果 1 不满足横排竖排九宫格无重复的话,就再填入 2 ,以此类推,直到填入一个暂时满足规则的数,中断此格,移动到下一个空格重复这个过程。如果到达某个空格发现已经无数可选了,说明前面某一格填错了,那就返回上一格,从上一格的中断处继续往 9 尝试,直到这样回溯到填错的那一格。

# -*- coding: utf-8 -*-
# author: zjp
# 输入芬兰数学家因卡拉花费3个月时间设计出的世界上迄今难度最大的数独:
# 将空格用 . 表示,同时将数独表示成嵌套的列表list,这样每格的行数和列数就正好是列表中每个对应数的索引

import datetime
sudoku1 = [
    ["5", "3", ".", " .", "7", ".", ".", ".", "."],
    ["6", ".", ".", "1", "9", "5", ".", ".", "."],
    [".", "9", "8", ".", ".", ".", ".", "6", "."],
    ["8", ".", ".", ".", "6", ".", ".", ".", "3"],
    ["4", ".", ".", "8", ".", "3", ".", ".", "1"],
    ["7", ".", ".", ".", "2", ".", ".", ".", "6"],
    [".", "6", ".", ".", ".", ".", "2", "8", "."],
    [".", ".", ".", "4", "1", "9", ".", ".", "5"],
    [".", ".", ".", ".", "8", ".", ".", "7", "9"]
]

sudoku2 = [
    [8,0,0,0,0,0,0,0,0],
    [0,0,3,6,0,0,0,0,0],
    [0,7,0,0,9,0,2,0,0],
    [0,5,0,0,0,7,0,0,0],
    [0,0,0,8,4,5,7,0,0],
    [0,0,0,1,0,0,0,3,0],
    [0,0,1,0,0,0,0,6,8],
    [0,0,8,5,0,0,0,1,0],
    [0,9,0,0,0,0,4,0,0]
]


def wr_sudoku(board):  # 判断数独是否符合条件
    # 判断一行是否有效
    for i in range(9):
        for j in board[i]:
            if (j != '.') and (board[i].count(j) > 1):
                return False
        # 判断一列是否有效
        column = [k[i] for k in board]
        for n in column:
            if (n != '.') and (board[i].count[n] > 1):
                return False
    # 判断九宫格是否有效
    for i in range(3):
        for j in range(3):
            grid = [tem[j * 3:(j + 1) * 3] for tem in board[i * 3:(i + 1) * 3]]
            merge_str = grid[0] + grid[1] + grid[2]  #合并为一个list[]
            for m in merge_str:
                if (m != '.') and (merge_str.count(m) > 1):
                    return False
    return True


class fill_sudoku(object):
    def __init__(self, board):
        self.b = board
        self.t = 0

    def check(self, x, y, value):  # 检查每行每列及每九宫是否有相同项
        for row_item in self.b[x]:
            if row_item == value:
                return False
        for row_all in self.b:
            if row_all[y] == value:
                return False
        row, col = x/3*3, y/3*3
        row3col3 = self.b[row][col:col+3]+self.b[row+1][col:col+3]+self.b[row+2][col:col+3]
        for row3col3_item in row3col3:
            if row3col3_item == value:
                return False
        return True

    def get_next(self, x, y):  # 得到下一个未填项
        for next_soulu in range(y+1, 9):
            if self.b[x][next_soulu] == 0:
                return x, next_soulu
        for row_n in range(x+1, 9):
            for col_n in range(0, 9):
                if self.b[row_n][col_n] == 0:
                    return row_n, col_n
        return -1, -1  #若无下一个未填项,返回-1

    def try_it(self, x, y):  # 主循环
        if self.b[x][y] == 0:
            for i in range(1, 10):  # 从1到9尝试
                self.t += 1
                if self.check(x, y, i):  # 符合 行列宫均无条件 的
                    self.b[x][y] = i  #将符合条件的填入0格
                    next_x, next_y = self.get_next(x, y)  #得到下一个0格
                    if next_x == -1:  #如果无下一个0格
                        return True  #返回True
                    else:        #如果有下一个0格,递归判断下一个0格直到填满数独
                        end=self.try_it(next_x, next_y)
                        if not end:   #在递归过程中存在不符合条件的,即 使try_it函数返回None的项
                            self.b[x][y] = 0    #回朔到上一层继续
                        else:
                            return True

    def start(self):
        begin = datetime.datetime.now()
        if self.b[0][0] == 0:
            self.try_it(0, 0)
        else:
            x, y = self.get_next(0, 0)
            self.try_it(x, y)
        for i in self.b:
            print(i)
        end = datetime.datetime.now()
        print('cost time: ', end - begin)
        print('times: ', self.t)
        return


s = fill_sudoku(sudoku2)
s.start()

虽然python求解数独已经很快了,但是Java好像可以更快,有兴趣可以试一试。

你可能感兴趣的:(Python)