- 1.5 企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能promptchatgptlangchaingpt
企业级AI大模型四阶技术全景解析:从Prompt到Pre-training的进化路径一、技术演进金字塔:四阶技术如何构建AI新范式▲预训练│(万亿参数基建)├─大模型微调│(领域知识注入)├─AI智能体│(任务自动化)└─提示工程(零样本交互)1.1技术层级关系与适用场景技术阶段技术门槛算力需求企业应用成熟度典型工具链提示工程★☆☆☆☆CPU即可90%+企业已部署LangChain、AutoGPT
- 【prompt示例】智能客服+智能质检业务模版
姚瑞南
prompt实战应用案例prompt前端
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)整体结构说明:序号结构说明备注1prompt主体提示词主体主要包含定义角色+背景描述+目标+输出内容2变量变量主要提取知识库文档流程里涉及的⼀些判断项,需要接口的部分3注意事项常规注
- 代码随想录-算法训练营day30(回溯算法06:重新安排行程,N皇后,数独,回溯算法总结)
java菜鸡加油
算法
第七章回溯算法part06●332.重新安排行程●51.N皇后●37.解数独●总结详细布置今天这三道题都非常难,那么这么难的题,为啥一天做三道?因为一刷也不求大家能把这么难的问题解决,所以大家一刷的时候,就了解一下题目的要求,了解一下解题思路,不求能直接写出代码,先大概熟悉一下这些题,二刷的时候,随着对回溯算法的深入理解,再去解决如下三题。大家今天的任务,其实是对回溯算法章节做一个总结就行。重点是
- 开源大模型性能追平闭源模型技术路径分析
Mr' 郑
开源
(预测实现时间:2025Q2)开源模型进化路径MoE架构稀疏训练分布式RLHF2024突破2023现状2025超越性能反超一、现状对比与瓶颈分析(2024Q3)1.核心差距量化指标能力维度闭源模型均值开源模型均值差距比例复杂推理(MMLU)86.7%79.2%8.7%代码生成(HumanEval)89.1%81.4%8.5%长文本理解(NarrativeQA)82.3%73.9%10.2%多模态理
- Java实现日志全链路追踪.精确到一次请求的全部流程
王会举
javalog4j
广大程序员在排除线上问题时,会经常遇见各种BUG.处理这些BUG的时候日志就格外的重要.只有完善的日志才能快速有效的定位问题.为了提高BUG处理效率.我决定在日志上面优化.实现每次请求有统一的id.通过id能获取当前接口的全链路流程走向.实现效果如下:一次查询即可找到所有关键信息.不再被多线程日志进行困扰了.1:日志打印框架log4j->logbacklogback是springboot默认自带的
- 天童美语:增强孩子的柔韧性
t05777
其他
家长们知道吗?柔韧性训练有助于孩子骨骼、肌肉和关节的发育,降低运动损伤的风险。包头天童教育认为:提高身体素质,提升孩子的柔韧性可以起到舒缓身心,拉伸筋骨,助力身体成长发育等作用,让孩子经常锻炼柔韧性是非常好的生活方式。柔韧性,不仅仅是指身体上的灵活性和延展性,更是心灵上的一种适应性和包容力。在孩子们成长的道路上,良好的柔韧性将帮助他们更好地应对各种挑战,挖掘潜能,实现全面发展。一般来说,有良好柔韧
- Elasticsearch+Fluentd+Kibana 日志收集系统的搭建
Resean0223
devopselasticsearchdocker
本次安装部署是在docker环境中进行,没有安装docker的,先安装docker环境,具体也可以参考我另一篇文章:[https://blog.csdn.net/qq_31366767/article/details/120880458]一、ElasticSearch安装配置1、首先先创建好安装目录,然後在改目录下创建docker-compse.yml文件version:'2'networks:e
- DeepSeek-R1 蒸馏 Qwen 和 Llama 架构 企业级RAG知识库
qq_25467441
人工智能机器学习深度学习
“DeepSeek-R1的输出,蒸馏了6个小模型”意思是利用DeepSeek-R1这个大模型的输出结果,通过知识蒸馏技术训练出6个参数规模较小的模型,以下是具体解释:-**知识蒸馏技术原理**:知识蒸馏是一种模型压缩技术,核心是“教师-学生”模式。在该场景中,DeepSeek-R1作为“教师模型”,它是一个大型、复杂且性能强大的模型,具有丰富的语言知识和出色的处理能力。以Qwen或Llama架构为
- 【代码随想录训练营第42期 打卡总结 - 刷题记录】
逝去的秋风
代码随想录打卡总结
目录一、感受二、打卡内容数组:链表:哈希表:字符串:栈与队列:二叉树:回溯:贪心:动态规划:单调栈:图论:三、收尾一、感受先说说这两个月来代码随想录打卡刷题的感受吧。从一开始的数组二分双指针,到最后的图论最短路,难度可以说是在不断增加,但也确切感觉到了很大的收获。印象最深的就是回溯三部曲和动规五部曲了,可以说真的是让我真正理解了回溯的实现过程和动规的解题思路,受益匪浅。跟着训练营坚持打卡的这段日子
- 磨人小妖精-tensorflow之removed in a future version
凯旋的铁铁
磨人的小妖精pythontensorflow
TensorFlow1.14版本TensorFlow使用五个不同级别的日志消息。按照上升的顺序,它们是DEBUG,INFO,WARN,ERROR和FATAL。当您在任何这些级别配置日志记录时,TensorFlow将输出与该级别相对应的所有日志消息以及所有级别的严重级别。例如,如果设置了ERROR的日志记录级别,则会收到包含ERROR和FATAL消息的日志输出,如果设置了一个DEBUG级别,则会从所
- 《深度Q网络优化:突破高维连续状态空间的束缚》
人工智能深度学习
在人工智能的发展历程中,深度Q网络(DQN)作为强化学习与深度学习融合的关键成果,为解决复杂决策问题开辟了新路径。但当面对高维连续状态空间时,DQN会出现训练不稳定、收敛速度慢等问题,严重限制了其应用范围。如何优化DQN以适应高维连续状态空间,成为当下研究的热点。深度Q网络基础回顾深度Q网络结合了深度学习强大的特征提取能力与Q学习的决策优化思想。在传统强化学习中,Q学习通过Q表记录每个状态-动作对
- 常见的几种设计模式(详细)——应用场景和实现方式
QiuYanping_
设计模式单例模式观察者模式工厂方法模式装饰器模式策略模式责任链模式
文章目录单例模式应用实现工厂模式应用实现❓策略模式应用实现⚖️代理模式应用实现观察者模式(发布订阅模式)应用实现装饰器模式应用实现模版方法模式应用实现⛓️责任链模式应用实现单例模式整个程序运行过程中,类只有一个实例,减少内存消耗应用资源管理:需要共享的资源如数据库连接池、线程池等,确保只有一个实例管理这些资源全局配置:配置类日志记录器:在多线程或分布式环境中确保日志记录器唯一性实现实现时注意:构
- DQN的原理和代码实现
SmallerFL
NLP&机器学习DQN强化学习深度学习
文章目录1.概述2.DQN的训练步骤2.1初始化2.2训练循环2.3终止条件2.4评估3.代码示例1.概述深度Q网络(DeepQ-Network,DQN)是强化学习中的一种重要算法,由GoogleDeepMind于2013年提出。DQN结合了Q学习和深度学习,通过使用神经网络来近似Q值函数,解决了传统Q学习在高维状态空间中的问题。2.DQN的训练步骤2.1初始化环境:定义环境(例如,Atari游戏
- 集成Dome开发实践:架构、工具与技术
易个小小钡原子
本文还有配套的精品资源,点击获取简介:集成Dome是将不同软件组件或服务高效组合的IT开发实践,旨在提升代码复用性、降低维护成本,并保障系统稳定可靠。关键集成概念包括接口设计、API调用、协议选择、数据交换格式、版本控制、依赖管理、测试与调试、错误处理与日志记录、容器化与微服务以及持续集成/持续部署(CI/CD)。"YouMengShare"可能提供特定集成解决方案,加速开发过程并提升效率。1.接
- ML.NET库学习006:成人人口普查数据分析与分类预测
North_D
ML.NET库机器学习人工智能深度学习数据挖掘目标检测自然语言处理神经网络
文章目录ML.NET库学习006:成人人口普查数据分析与分类预测概述数据集数据字段解释为何数据准备很重要主要功能与模块数据准备机器学习工作流代码结构说明数据准备模块机器学习工作流数据加载与分割特征工程与模型训练模型评估与预测实现细节与注意事项数据准备模块机器学习工作流性能优化项目优势LightGBM分类器原理说明总结ML.NET库学习006:成人人口普查数据分析与分类预测概述本项目使用C#和ML.
- 【YOLO】常用脚本
我才是真正的17号
脚本YOLO人工智能深度学习
目录VOC转YOLO划分训练集、测试集与验证集VOC转YOLOimportosimportxml.etree.ElementTreeasETdefconvert(size,box):dw=1./size[0]dh=1./size[1]x=(box[0]+box[1])/2.0y=(box[2]+box[3])/2.0w=box[1]-box[0]h=box[3]-box[2]x=x*dww=w*d
- 《必知!G1 堆结构全揭秘,性能优化从这里开始》
@孤随
JAVA性能优化
G1垃圾收集器原理与调优实践目录G1垃圾收集器简介核心设计原理2.1区域化堆内存布局2.2分代收集与混合GC2.3并发标记与SATB算法G1工作流程详解3.1YoungGC3.2MixedGC3.3FullGC调优参数与实战案例4.1关键JVM参数4.2电商系统调优案例4.3日志分析与工具使用避坑指南总结1.G1垃圾收集器简介G1(Garbage-First)是JDK9及以后版本的默认垃圾收集器,
- 【开发日志】数字人+LLM:从概念到实现的全程记录!
AI大模型-王哥
大模型学习大模型教程大模型人工智能LLM数字人大模型入门
数字人是各种技术的集合,所以文章尽可能完整的介绍,项目中涉及的大小模型均可在本地部署并在我本人机器上运行。系统环境:CPU:i91490016GBGPU:GTX40608GBSYS:Windows11WSL:Ubuntu22.04本文章使用到的技术内容:数字人框架:LiveTalking大模型:Llama3.1TTS:GPT-SoVits语音转视频:Wav2Lip前端展示:WebRTC项目整体架构
- c++加载TensorRT调用深度学习模型方法
feibaoqq
深度学习深度学习YOLO
使用TensorRT来调用训练好的模型并输出结果是一个高效的推理过程,特别是在需要低延迟和高吞吐量的应用场景中。以下是一个基本的步骤指南,展示了如何在C++中使用TensorRT进行推理。步骤1:准备环境安装TensorRT:确保你已经安装了NVIDIATensorRT库。准备模型:确保你的训练好的模型已经转换为TensorRT支持的格式,通常是一个.engine文件。你可以使用onnx-tens
- X-R1 项目代码文件的详细剖析并精读rewards、grpo、x_grpo_trainer(src/x_r1)
仙人掌_lz
人工智能人工智能深度学习学习
这个项目名为[X-R1](https://github.com/dhcode-cpp/X-R1),是一个基于强化学习的训练框架,旨在构建一个易于使用、低成本的训练框架,以加速ScalingPost-Training的开发。以下是对该项目的详细解释:项目结构项目的主要目录结构如下:X-R1/├──.gitignore├──LICENSE├──Makefile├──README.md├──requir
- 基于开源千文模型(如Qwen、ChatGLM等)实施如何进行动态蒸馏,详细说明操作步骤.
墨者清风
模型训练人工智能技术发展模型动态蒸馏人工智能深度学习语言模型
基于开源千文模型(如Qwen、ChatGLM等)实施如何进行动态蒸馏,详细说明操作步骤.1.动态蒸馏的核心思想动态蒸馏的目标是通过教师模型(通常是一个较大的预训练模型)的输出,指导学生模型(较小的模型)的训练。具体来说:教师模型:提供软标签(softlabels),即概率分布,而不是硬标签(hardlabels)。学生模型:通过模仿教师模型的输出分布,学习更丰富的知识。动态蒸馏:在训练过程中,教师
- Seata分布式事务失败通知
huan_1993
seataseata分布式事务分布式事务seata失败通知分布式事务失败通知
一、背景在我们使用Seata作为分布式事务时,有些时候我们的分布式时候并不是每次都可以成功的,而对于这些失败的分布式事务就需要进行通知。这篇文章简单记录一下如何实现通知。二、功能实现此处模拟邮件通知,但是不真正发送邮件,只是简单记录一个日志。三、注意事项1、假设我们的分布式事务回滚失败,在AT模式中是会锁定表记录数据的。后期需要获取这条记录的全局锁操作,都会失败。举例:假设存在如下数据表记录数据账
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测
XD742971636
深度学习机器学习深度学习YOLO目标检测
介绍一个酷炫的目标检测方式:论文:https://arxiv.org/abs/2401.17270代码:https://github.com/AILab-CVC/YOLO-World文章目录摘要Introduction第2章相关工作2.1传统目标检测2.2开放词汇目标检测第3章方法3.1预训练公式:区域-文本对3.2模型架构3.3可重参数化的视觉-语言路径聚合网络(RepVL-PAN)3.4预训练
- 记一次hivemetastore启动报错
不吃饭的猪
hive
1,启动hivemetastore后报错日志2,排查lib下的mysql的驱动也在,这里和mysql的驱动大小一样3,把hive-site.xml中无关的配置都删掉,重启metastore还是报错4,最后排查,这个节点rpm部署了hive,现在只是copy了一个hive的目录过来,导致/usr/bin/hive这个里面和现在部署的安装包不是同一个
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- PyTorch入门实战:从零搭建你的第一个神经网络
不打滑的西瓜皮
机器学习深度学习人工智能神经网络pythonpytorchpycharm
目录一、PyTorch简介:为什么选择它?二、环境搭建:5分钟快速安装三、核心概念:张量与自动求导1.张量(Tensor):深度学习的数据基石2.自动求导(Autograd):神经网络训练的核心四、实战:手写数字识别(MNIST)1.数据集加载与预处理2.构建卷积神经网络(CNN)3.训练与评估五、下一步学习建议一、PyTorch简介:为什么选择它?PyTorch是当前最热门的深度学习框架之一,由
- 【Elasticsearch】运行时字段(Runtime Fields)索引时定义运行时字段
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,运行时字段(RuntimeFields)是一种在查询时动态计算的字段,而不是在索引时预先存储的字段。运行时字段为数据处理提供了极大的灵活性,尤其是在处理结构不固定的日志数据或需要动态生成字段值的场景中。运行时字段的主要特点1.动态计算:•运行时字段的值是在查询时通过Painless脚本动态生成的,而不是在索引时存储的。•这种方式允许在不重新索引数据的情况下,向现有文
- 日志学习转载
ListerGray
Log
转载请看原文带你掌握Java各种日志框架文章目录一:日志基本概念及框架1:什么是日志2:日志的作用3:常用日志框架二:JUL日志框架1:框架结构图2:入门案例3:日志级别4:自定义日志(控制台记录和日志文件记录)5:JUL(Logging)父子关系6:JUL使用自定义配置文件三:Log4j日志框架1:入门案例2:日志级别3:Log4j相关组件(重点)4:自定义配置文件5:自定义配置Logger6:
- centos7安装部署clickhouse数据库 小白详细教程
这是个错觉
clickhouse数据库
目录1.系统概述...21.1服务器环境概述...31.2操作系统...31.3数据库软件...32.数据库账户说明...32.1数据库账户...33.ClickHouse运行环境安装部署...43.1上传数据库软件包到服务器...43.2解压数据库软件包安装...53.3解压软件包并运行安装...53.4更改数据库数据目录...93.5修改日志文件位置...154.ClickHouse日常...
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f