Pymongo Tutorial & Pymongo入门教

本教程是pymongo和Mongo的一个简单介绍,基于pymongo2.7.2的tutorial。看完后应该对Pymongo对Mongo的基本操作有认识了。

教程

这教程是pymongo和Mongo的一个简单介绍。看完后应该对Pymongo对Mongo的基本操作认识了。

前置条件

开始之前,安装PyMongo和Mongo。确保在python交互界面执行import不报错:

?
1
>>>  import pymongo

你需要有一个已经在运行的MongoDB实例。如果你已经下载安装了,可以这样启动:

?
1
$ mongod
回到顶部

通过MongoClient建立一个连接。

开始使用PyMongo的第一步是创建一个MongoClient,对应于MongoDB实例。操作起来so easy:

?
1
2
>>> from pymongo  import MongoClient
>>> client = MongoClient()

上面代码将会连接默认的host和port。当然也可指定:

?
1
>>> client = MongoClient( 'localhost' 27017 )

或者用 MongoDB URI 格式:

?
1
>>> client = MongoClient( 'mongodb://localhost:27017/' )
回到顶部

获取一个数据库

一个MongoDB实例可以支持多个独立的数据库。使用PyMongo时,可以通过访问MongoClient的属性的方式来访问数据库:

?
1
>>> db = client.test_database

如果数据库名字使属性访问方式不能用(类似test-database),也可以通过访问字典值的方式:

?
1
>>> db = client[ 'test-database' ]
回到顶部

获取一个Collection

一个collection指一组存在MongoDB中的文件,大致可以认为是关系型数据库中表的概念。获取Collection方法与获取数据库方法一致:

?
1
>>> collection = db.test_collection

或字典方式:

?
1
>>> collection = db[ 'test-collection' ]

需要强调的一点是,MongoDB里的collection和数据库都是惰性创建的 - 之前我们提到的所有命令实际没有对MongoDB server进行任何操作。直到第一个文件插入后,才会创建。

回到顶部

文件(Documents)

数据在MongoDb中是以JSON类文件的形式保存起来的。在PyMongo中用字典来代表文件。例如,下面这个字典就可以代表一篇博文:

?
1
2
3
4
5
>>>  import datetime
>>> post = { "author" "Mike" ,
...          "text" "My first blog post!" ,
...          "tags" : [ "mongodb" "python" "pymongo" ],
...          "date" : datetime.datetime.utcnow()}

注意,文件里可以保存python原生类型(datetime.datetime),这些类型的值会被自动在原生类型和BSON格式之间转换。

回到顶部

文件插入操作

要把一个文件插入collection,可以使用insert()方法:

?
1
2
3
4
>>> posts = db.posts
>>> post_id = posts.insert(post)
>>> post_id
ObjectId( '...' )

文件被插入之后,如果文件内没有_id这个键值,那么系统自动添加一个到文件里。这是一个特殊键值,它的值在整个collection里是唯一的。insert()返回这个文件的_id值。对这个值的更多内容,可以参考:the documentation on _id。

插入第一个文件后,这个posts collection 就真实的在server上创建了。可以通过查看数据库上的所有collection来验证:

?
1
2
>>> db.collection_names()
[u 'system.indexes' , u 'posts' ]

这个名为 system.indexes的 collection是个特殊的内部collection,这是自动创建的。

回到顶部

单个文件获取 find_one()

MongoDB中最基本的查询就是find_one。这个函数返回一个符合查询的文件,或者在没有匹配的时候返回None。这在你知道只有一个文件符合条件的时候,或者只对第一个符合条件的文件感兴趣的时候,很有用。下面用 find_one() 来获取 posts collection里的第一个文件:

?
1
2
>>> posts.find_one()
{u 'date' : datetime.datetime(...), u 'text' : u 'My first blog post!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Mike' , u 'tags' : [u 'mongodb' , u 'python' , u 'pymongo' ]}

返回结果是一个我们之前插入的符合条件的字典类型值。 
注意,返回的文件里已经有了_id这个键值,这是自动添加的。 
find_one()还支持对特定元素进行匹配的查询。筛选出作者是“Mike”的文件:

?
1
2
>>> posts.find_one({ "author" "Mike" })
{u 'date' : datetime.datetime(...), u 'text' : u 'My first blog post!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Mike' , u 'tags' : [u 'mongodb' , u 'python' , u 'pymongo' ]}

如果换个作者名,像 “Eliot”,就查不到结果:

?
1
2
>>> posts.find_one({ "author" "Eliot" })
>>>
回到顶部

按照ObjectId查询

通过_id也可以进行查询, 在例子中就是ObjectId:

?
1
2
3
4
>>> post_id
ObjectId(...)
>>> posts.find_one({ "_id" : post_id})
{u 'date' : datetime.datetime(...), u 'text' : u 'My first blog post!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Mike' , u 'tags' : [u 'mongodb' , u 'python' , u 'pymongo' ]}

注意 ObjectId 并不等价于他的字符串形式。

?
1
2
3
>>> post_id_as_str = str(post_id)
>>> posts.find_one({ "_id" : post_id_as_str}) # No result
>>>

web应用的一个常见任务就是在requset的URL里获取ObjectId然后找到与之匹配的文件。在本例中,必须要先从字符串转换为ObjectId然后传给find_one:

?
1
2
3
4
5
6
from bson.objectid  import ObjectId
 
# 框架从URL里获取post_id,然后把他作为字符串传入
def get(post_id):
     # 从字符串转换为ObjectId:
     document = client.db.collection.find_one({ '_id' : ObjectId(post_id)})

与这个话题相关的文章:When I query for a document by ObjectId in my web application I get no result

回到顶部

关于Unicode字符串的一点说明

你可能已经注意到,之前存入数据库的事常规的Python字符串,这与我们从数据库服务器里取回来的看起来不同(比如 u’Mike’ 而不是‘Mike’)。下面简单解释一下。

MongoDB 以格式保存数据. BSON 字符串都是 UTF-8编码的, 所以PyMongo必须确保它保存的字符串值包含有效地 UTF-8数据.常规字符串 ( )都是有效的,可以不改变直接保存。Unicode 字符串( )就需要先编码成 UTF-8 格式.例子里的字符串显示为u’Mike’ 而不是 ‘Mike’是因为 PyMongo 会把每个BSON 字符串转换成 Python 的unicode 字符串, 而不是常规的 str.

更多关于Python unicode字符串的内容,参考这里.

回到顶部

批量插入

为了让查询更有趣点,我们多插入几个文件。除了单个文件插入,也可以通过给insert()方法传入可迭代的对象作为第一个参数,进行批量插入操作。这将会把迭代表中的每个文件插入,而且只向server发送一条命令:

?
1
2
3
4
5
6
7
8
9
10
>>> new_posts = [{ "author" "Mike" ,
...                "text" "Another post!" ,
...                "tags" : [ "bulk" "insert" ],
...                "date" : datetime.datetime( 2009 11 12 11 14 )},
...              { "author" "Eliot" ,
...                "title" "MongoDB is fun" ,
...                "text" "and pretty easy too!" ,
...                "date" : datetime.datetime( 2009 11 10 10 45 )}]
>>> posts.insert(new_posts)
[ObjectId( '...' ), ObjectId( '...' )]

这个例子里有一些比较有趣的地方:

insert()现在返回两个ObjectId实例,每个代表一个插入的文件。

new_posts[1]与其他的posts内容格式不相同:里面没有"tags”,另外我们增加了一个新的“title”域。这就是MongoDB所提到的无schema特点。

回到顶部

查询多个文件

想获取多个文件的时候,可以使用find()方法。find()返回一个 Cursor 实例,通过它我们可以便利每个符合查询条件的文件。比如便利每个 posts collection里的文件:

?
1
2
3
4
5
6
>>>  for post in posts.find():
...   post
...
{u 'date' : datetime.datetime(...), u 'text' : u 'My first blog post!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Mike' , u 'tags' : [u 'mongodb' , u 'python' , u 'pymongo' ]}
{u 'date' : datetime.datetime( 2009 11 12 11 14 ), u 'text' : u 'Another post!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Mike' , u 'tags' : [u 'bulk' , u 'insert' ]}
{u 'date' : datetime.datetime( 2009 11 10 10 45 ), u 'text' : u 'and pretty easy too!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Eliot' , u 'title' : u 'MongoDB is fun' }

与使用find_one()时候相同,可以传入一个文件来限制查询结果。比如查询所有作者是 “Mike”的文章:

?
1
2
3
4
5
>>>  for post in posts.find({ "author" "Mike" }):
...   post
...
{u 'date' : datetime.datetime(...), u 'text' : u 'My first blog post!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Mike' , u 'tags' : [u 'mongodb' , u 'python' , u 'pymongo' ]}
{u 'date' : datetime.datetime( 2009 11 12 11 14 ), u 'text' : u 'Another post!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Mike' , u 'tags' : [u 'bulk' , u 'insert' ]}
回到顶部

Counting

如果只想知道符合查询条件的文件有多少,可以用count()操作,而不必进行完整的查询。查询collection的文件总数:

?
1
2
>>> posts.count()
3

或者只是特定的一些文件:

?
1
2
>>> posts.find({ "author" "Mike" }).count()
2
回到顶部

限定范围的查询

MongoDB 支持多种高级查询。例如,查询晚于某个特定时间的post,结果按作者名排序:

?
1
2
3
4
5
6
>>> d = datetime.datetime( 2009 11 12 12 )
>>>  for post in posts.find({ "date" : { "$lt" : d}}).sort( "author" ):
...   print post
...
{u 'date' : datetime.datetime( 2009 11 10 10 45 ), u 'text' : u 'and pretty easy too!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Eliot' , u 'title' : u 'MongoDB is fun' }
{u 'date' : datetime.datetime( 2009 11 12 11 14 ), u 'text' : u 'Another post!' , u '_id' : ObjectId( '...' ), u 'author' : u 'Mike' , u 'tags' : [u 'bulk' , u 'insert' ]}

这里使用了特殊的”$lt"操作符来进行范围查询,并调用sort()对结果按照作者排序。

回到顶部

索引(Indexing)

为了让上述查询更快一点,可以添加一个在"date” 和 “author"上添加复合索引。首先,使用explain()方法来了解查询在没有添加索引情况下如何执行:

?
1
2
3
4
>>> posts.find({ "date" : { "$lt" : d}}).sort( "author" ).explain()[ "cursor" ]
u 'BasicCursor'
>>> posts.find({ "date" : { "$lt" : d}}).sort( "author" ).explain()[ "nscanned" ]
3

可以看道,查询使用的是BasicCursor,而且扫描了全部的三个文件。现在添加一个复合索引,再看看同样的操作:

?
1
2
3
4
5
6
7
>>> from pymongo  import ASCENDING, DESCENDING
>>> posts.create_index([( "date" , DESCENDING), ( "author" , ASCENDING)])
u 'date_-1_author_1'
>>> posts.find({ "date" : { "$lt" : d}}).sort( "author" ).explain()[ "cursor" ]
u 'BtreeCursor date_-1_author_1'
>>> posts.find({ "date" : { "$lt" : d}}).sort( "author" ).explain()[ "nscanned" ]
2

现在查询使用的是BtreeCursor(利用这个索引),并且只扫描了两个符合条件的文件。

关于索引可以查看MongoDB的文档indexs.


来自:http://my.oschina.net/zanyang1103/blog/337142

你可能感兴趣的:(MongoDB)