图解算法学习笔记(六):广度优先搜索

目录

1)图简介

2)图是什么

3)广度优先搜索

4)实现图

5)实现算法

6)小结


本章内容;

  •        学习使用新的数据结构图来建立网络模型;
  •        学习广度优先搜索;
  •        学习有向图和无向图;
  •        学习拓扑排序,这种排序算法指出了节点之间的依赖关系。

1)图简介

假设你住在旧金山,要从双子峰前往金门大桥。你想乘公交车前往,并希望换乘最少。可乘坐的公交车如下:

图解算法学习笔记(六):广度优先搜索_第1张图片

从图中我们可以发现,前往进门大桥的最短路径需要三步,这种问题被称为最短路径问题(shorterst-path problem)。

图解算法学习笔记(六):广度优先搜索_第2张图片

要确定如何从双子峰前往金门大桥,需要两个步骤:

  • 使用图来建立问题模型。

  • 使用广度优先搜索解决问题。

2)图是什么

图模拟一组连接,图由节点(node)和边(edge)组成。

图解算法学习笔记(六):广度优先搜索_第3张图片

3)广度优先搜索

广度优先搜索是一种用于图的查找算法。可回答两类问题:

从A节点有前往几点B的路径吗?哪条路径最短?

下面来看一个例子:假设你经营这一个芒果农场,需要寻找芒果经销商,以便将芒果卖给他。为此,你可在朋友中查找。

图解算法学习笔记(六):广度优先搜索_第4张图片

这种查找很简单,首先创建一个朋友名单。然后依次检查名单中的每个人,看看他是否是芒果销售商。

图解算法学习笔记(六):广度优先搜索_第5张图片

假设你没有朋友是芒果销售商,那么你必须在朋友的朋友中查找。

图解算法学习笔记(六):广度优先搜索_第6张图片

检查名单中的每个人时,你都将其朋友加入名单。

图解算法学习笔记(六):广度优先搜索_第7张图片

1.查找最短路径

人物关系如图所示:

图解算法学习笔记(六):广度优先搜索_第8张图片

在你看来,一度关系胜过二度关系,二度关系胜过三度关系,等等。因此,你应现在一度关系中搜索,确定其中没有芒果销售商后,才在二度关系中搜索。广度优先搜索就是这样做的!

2.队列

队列的工作原理与现实生活中的队列完全相同。假设你与朋友一起在公交车站排队,如果你排在他前面,你讲先上车。队列只有两种操作:入队和出队。

图解算法学习笔记(六):广度优先搜索_第9张图片

队列是一种先进先出(First In First Out,FIFO)的数据结构,而栈是一种后进先出(Last In First Out, LIFO)的数据结构。

图解算法学习笔记(六):广度优先搜索_第10张图片

4)实现图

使用散列表,表示节点与节点之间的关系!

图解算法学习笔记(六):广度优先搜索_第11张图片

有向图与无向图关系如图:

图解算法学习笔记(六):广度优先搜索_第12张图片

5)实现算法

概述一下算法原理:

图解算法学习笔记(六):广度优先搜索_第13张图片

寻找芒果销售商的Python源码为:

#从标准库导入队列元素
from collections import deque

def person_is_seller(name):
      return name[-1] == 'm'

graph = {}
graph["you"] = ["alice", "bob", "claire"]
graph["bob"] = ["anuj", "peggy"]
graph["alice"] = ["peggy"]
graph["claire"] = ["thom", "jonny"]
graph["anuj"] = []
graph["peggy"] = []
graph["thom"] = []
graph["jonny"] = []

def search(name):
	#创建一个新队列
    search_queue = deque()
    search_queue += graph[name]
    # This array is how you keep track of which people you've searched before.
    searched = []
    while search_queue:
		#队首元素出队
        person = search_queue.popleft()
        # Only search this person if you haven't already searched them.
        if not person in searched:
            if person_is_seller(person):
                print person + " is a mango seller!"
                return True
            else:
                search_queue += graph[person]
                # Marks this person as searched
                searched.append(person)
    return False

search("you")

6)小结

  • 广度优先搜索指出是否有从A到B的路径。
  •  如果有,广度优先搜索将找出最短路径。
  • 面临类似于寻找最短路径的问题时,可尝试使用图来建立模型,再使用广度优先搜索来解决问题。
  • 有向图中的边为箭头,箭头的方向指定了关系的方向。
  •  无向图中的边不带箭头,其中的关系是双向的。
  •  队列是先进先出(FIFO)的。
  •  栈是后进先出(LIFO)的。
  • 你需要按加入顺序检查搜索列表中的人,否则找到的就不是最短路径,因此搜索列表必须是队列。
  • 对于检查过的人,务必不要再去检查,否则可能导致无限循环。

你可能感兴趣的:(图解算法学习笔记)