Nvidia DLA的内核驱动KMD(Kernel mode driver)中,并不是把DLA当成一个设备来控制,而是把不同的功能模块当做不同的processor,分别进行任务的管理和控制。在相同processor里分先后,不同队列靠依赖关系控制。当前分了6个processor,代码中如下定义。
#define DLA_OP_BDMA 0
#define DLA_OP_CONV 1
#define DLA_OP_SDP 2
#define DLA_OP_PDP 3
#define DLA_OP_CDP 4
#define DLA_OP_RUBIK 5
对应的芯片架构如下:
架构上分为高端的headed和低端的headless方案。差别就是是否有MCU来承担IPU的逻辑控制功能。如果有host CPU和MCU两种角色,就是headed方案,否则就是headless。
NVDLA的初始开源版本将仅提供headless模式的软件解决方案。本次运行的场景是在linux下,但是是按照CPU直接操控DLA的寄存器来实现的,也就是headless模式。好处是很容易从无头模式看到核心的IPU控制逻辑。
主要的流程思路
除了初始化,驱动主要处理对上对下两个接口。对上是来和用户态的IOCTL,对下是处理中断。两者最终都是调用或者激活nvdal_task_submit,清理task之间的dependency关系,将合适的task放入processor执行。
图表 1 KMD的主流程
每个子模块processor有两套寄存器,也就是2个group寄存器。这种乒乓思路类似于队列和shadow寄存器的意图,方便一个任务完成后紧接着处理另外一个group寄存器配置的任务,而不是需要完成产生中断后软件才配置下一个任务,以此保持硬件逻辑的全速运行。
软件里定义如下:
/**
* @ingroup Processors
* @name Number of groups
* @brief Each processor has 2 groups of registers
* @{
*/
#define DLA_NUM_GROUPS 2
struct dla_processor_group {
uint8_t id;
uint8_t rdma_id;
uint8_t active;
uint8_t events;
uint8_t roi_index;
uint8_t is_rdma_needed;
uint8_t pending;
int32_t lut_index;
uint8_t programming;
uint64_t start_time;
struct dla_common_op_desc *op_desc;
struct dla_common_op_desc *consumers[DLA_OP_NUM];
struct dla_common_op_desc *fused_parent;
union dla_operation_container *operation_desc;
union dla_surface_container *surface_desc;
};
NVDLA驱动以Platform device driver的形式注册到内核。依靠name = "NVDLA”来进行match。重要的函数为nvdla_probe。
module_platform_driver(nvdla_driver);
static struct platform_driver nvdla_driver = {
.probe = nvdla_probe,
.remove = __exit_p(nvdla_remove),
.driver = {
.owner = THIS_MODULE,
.name = "NVDLA",
.of_match_table = nvdla_of_match,
},
};
Probe函数nvdla_probe
Step1:
申请nvdla_dev并使用platform_set_drvdata挂载到如参pdev上。
Step2:
用devm_ioremap_resource映射内存,用devm_request_irq注册中断。
Step3:
调用dla_register_driver将全局变量engine关联到nvdla_dev->engine_context,Engine包含了device的各种能力,如DMA, CONV。这个就说明engine的含义是各个DLA中模块独立的处理能力。
把desc_cache和desc_refcount设置全0。最后调用nvdla_drm_probe注册了drm(Direct Rendering Manager)驱动设备。Nvdla使用drm的主要目的是利用了drm的内存分配机制和ioctl。其实和drm的功能没什么关系。Nvdia作为GPU厂商,借用drm更轻车熟路。
中断处理nvdla_engine_isr
Step1
dla_isr_handler(nvdla_dev->engine_context);
主要是根据读取S_INTR_STATUS寄存器得到的值,设置对应engine->processors的group->events标记。比如如果是GLB_S_INTR_STATUS_0就设置engine->processors[DLA_OP_CONV].groups[0].events= (1 << DLA_EVENT_OP_COMPLETED)
step2
complete(&nvdla_dev->event_notifier);
这个会唤醒nvdla_task_submit,调用dla_process_events来处理event。因为中断里可能表示有任务完成,那么就可能消除dependency,可能放入新的任务执行。
对用户态的IOCTL接口
对用户态的接口nvdla_submit利用了drm框架的ioctl。
struct drm_driver nvdla_drm_driver里包含了nvdla_drm_ioctls。索引到nvdla_submit。其他几个ioctl是内存相关的。
DRM_IOCTL_DEF_DRV(NVDLA_SUBMIT, nvdla_submit, DRM_RENDER_ALLOW),
1. 用copy_from_user从ioctl接口复制一些用户态的task数据到内核。
2. 调用nvdla_fill_task_desc填充task结构体
3. 调用nvdla_task_submit。
主流程入口函数nvdla_task_submit
Step1
调用dla_execute_task
Step2
等待wait_for_completion(&nvdla_dev->event_notifier),然后调用dla_process_events。
dla_process_events和dla_handle_events
dla_process_events遍历DLA_OP_NUM个processor调用dla_handle_events(processor)。
dla_handle_events遍历自己的processor->groups读取信息,先处理dma相关的event,调用dla_update_consumers来解除dependency_count。如果发现有operation的dependency_count降为0,就dla_enable_operation。这就等于是收到中断后,遍历所有类型的processor,遍历所有的group来解除dependency,找到能执行的下一个任务。
dla_handle_events最后调用了dla_op_completion来处理complete event。
dla_op_completion
1. 先调用dla_update_consumers清理dependency。
2. 如果(engine->network->num_operations == engine->num_proc_hwl)说明网络都算完了。如果还有任务接着调用dla_program_operation和dla_enable_operation来执行下一个任务,和dla_submit_operation的思路差不多。
dla_execute_task
/**
* Execute task selected by task scheduler
*
* 1. Read network configuration for the task
* 2. Initiate processors with head of list for same op
* 3. Start processing events received
*/
Step1
dla_read_network_config:
1. 将网络的信息读取到network全局变量。注意这里通过DMA直接读取network descriptor的结构体,不是逐个成员复制。
2. 用DMA将operation descriptor,dependency读取过来。
3. 用DMA读取surface descriptor,LUT,ROI的信息。
Step2
dla_initiate_processors
1. 遍历DLA_OP_NUM调用dla_get_op_desc找到类型中第一个任务,调用dla_submit_operation提交。
2. 调用dla_put_op_desc。将提交后的dla_common_op_desc consumer在desc_refcount对应的count--,如果为0就删除。
3. 调用dla_dequeue_operation将同类型的下一个操作从取出来,使用的是dla_get_op_desc来取。Dequeue的含义就是取下一个,似乎用fetch更合适。如果有下个op需要执行就调用dla_submit_operation继续执行,否则返回。但是dla_dequeue_operation调用dla_submit_operation并不查看返回结果,所以相当于有空闲资源有任务就继续提交,没有就算了。
dla_get_op_desc
1. 在desc_cache中找到当前task,以(desc->index == index && desc->roi_index == roi_index)判定相同。desc_refcount++
2. 如果没找到,在desc_cache取一个新entry,设置好,读取该task的对应的dependency_graph_addr的内容,设置desc_refcount为1。
dla_submit_operation
1. 调用dla_prepare_operation。看看有没有空闲的processor group,将任务描述放入空闲processor的group。没有空闲就返回错误。
2. 如果processor->is_ready,如果没有ready,就退出。
3. 如果ready,调用dla_program_operation。这里就开始设置对应操作类型的processor的寄存器了。也就是提交任务给硬件了。
4. 如果(op_desc->dependency_count == 0),就enable任务。这个问说明在上一步只是把所有运行的配置做好。任务是否能运行,dependency的关系是在AP的driver里完成的,而不是让DLA硬件来完成。另外,在任务的配置过程中,AP并不是通过某种命令发给DLA,而是DLA的各个子模块处理的processor的控制细节寄存器完全暴露出来,由AP直接配置各寄存器。
来源:华为云社区 作者:lurayvis