- 机器学习与深度学习的区别
eqa11
机器学习
文章目录机器学习与深度学习的区别一、引言二、机器学习概述1、机器学习定义1.1、机器学习的应用2、机器学习算法三、深度学习概述1、深度学习定义1.1、深度学习的应用2、深度学习算法四、机器学习与深度学习的区别1、学习方法2、数据需求3、应用领域五、总结机器学习与深度学习的区别一、引言在人工智能的浪潮中,机器学习和深度学习无疑是最耀眼的两颗明星。它们在许多领域都取得了令人瞩目的成就,从自动驾驶汽车到
- 最近的生活点滴
00Taylor
时间过得真快啊,转眼间又到了交作业的时间。梳理最近一直埋头做的事:(1)学习深度学习算法,目前已经反复复习好多遍了,从最初的生疏懵懂,到现在已经很理解了。(2)读英文文献。开始读时同样很多地方读不懂,焦虑甚至痛苦,但现在静下心来慢慢扣时,虽然慢,但确实渐渐懂了。(3)坚持每天40分钟的《华盛顿邮报》文章阅读,这是为了提高自己英文写作而坚持的。但目前坚持情况并不好,有时候会打折扣。这一点需要警醒。(
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 深度学习算法在图算法中的应用(图卷积网络GCN和图自编码器GAE)
大嘤三喵军团
深度学习算法网络
深度学习算法在图算法中的应用1.图卷积网络(GraphConvolutionalNetworks,GCN)图卷积网络(GCN)是一种将卷积神经网络(ConvolutionalNeuralNetworks,CNN)推广到图结构数据的方法。GCN被广泛用于节点分类、图分类、链接预测等任务。优势和好处灵活性:GCN可以处理不规则和不均匀的数据结构,比如社交网络、分子结构、交通网络等。高效性:GCN使用局
- 目标检测-YOLOv1
wydxry
深度学习目标检测YOLO人工智能
YOLOv1介绍YOLOv1(YouOnlyLookOnceversion1)是一种用于目标检测的深度学习算法,由JosephRedmon等人于2016年提出。它基于单个卷积神经网络,将目标检测任务转化为一个回归问题,通过在图像上划分网格并预测每个网格中是否包含目标以及目标的位置和类别来实现目标检测。YOLOv1的主要特点包括:快速的检测速度:相比于传统的目标检测算法,YOLOv1具有更快的检测速
- 2024 年高教社杯全国大学生数学建模竞赛 E 题 交通流量管控 详细思路+matlab代码+python代码+论文范例
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(不代写论文请勿盲目订阅)数学建模2024数学建模国赛2024数学建模国赛E题2024高教社杯
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!随着城市化进程的加快、机动车的快速普及,以及人们活动范围的不断扩大,城市道路交通拥堵问题日渐严重,即使在一些非中心城市,道路交通拥堵问
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- 如何在3D无序抓取中应用深度学习算法?
道亦无名
人工智能3d深度学习算法
在3D无序抓取中,深度学习算法的应用极大地提升了系统的识别精度和效率。以下是深度学习算法在3D无序抓取中的具体应用方式:一、物体识别图像预处理:首先,通过3D相机获取的点云数据或深度图像需要进行预处理,包括去噪、滤波、分割等步骤,以提高后续处理的准确性。特征提取:利用深度学习算法(如卷积神经网络CNN)对预处理后的图像进行特征提取。这些特征可以是物体的形状、纹理、边缘等,有助于区分不同的物体。分类
- 2024 年高教社杯全国大学生数学建模竞赛 D 题 反潜航空深弹命中概率问题 详细思路+matlab代码+python代码+论文范例
2024年数学建模国赛
备战2024数学建模国赛2024数学建模(持续更新耐心等待)数学建模数学建模国赛2024数学建模国赛2024年高教社杯D题matlabpython
持续更新中,2024年所有数学建模比赛思路代码都会发布到专栏内,只需要订阅一次。5号6号半价,会结合历年优秀论文、人工智能深度学习算法、chatgpt。会定期发布思路、代码和论文。思路和论文基本拿不到国奖,想要获得国奖的同学不要购买。适合基础差的学生,容易获得省奖!应用深水炸弹(简称深弹)反潜,曾是二战时期反潜的重要手段,而随着现代军事技术的发展,鱼雷已成为现代反潜作战的主要武器。但是,在海峡或浅
- 深度学习算法——Transformer
fw菜菜
数学建模深度学习transformer人工智能数学建模pythonpytorch
参考教材:动手学pytorch一、模型介绍Transformer模型完全基于注意力机制,没有任何卷积层或循环神经网络层。尽管Transformer最初是应用于在文本数据上的序列到序列学习,但现在已经推广到各种现代的深度学习中,例如语言、视觉、语音和强化学习领域。Transformer作为编码器-解码器架构的一个实例,其整体架构图在下图中展示。正如所见到的,Trans‐former是由编码器和解码器
- AI写作生成器,开启你的高效率智能写作模式
2401_85949356
AI写作人工智能编辑器
作为一名创作者,我一直在探索如何提升写作效率和质量的方法。在这个信息爆炸的时代,我们需要在短时间内创作出有价值、有吸引力的内容,以满足读者的需求和市场的竞争。而AI写作生成器的出现,为我的创作生涯带来了革命性的变化,让我开启了高效率的智能写作模式。AI写作生成器一一一火呱ai写作,这个听起来充满科技感的工具,已经成为我日常创作中不可或缺的伙伴。它是基于先进的人工智能技术和深度学习算法研发出来的智能
- 基于yolov8的课堂行为检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的课堂行为检测系统是现代教育技术的创新应用,该系统利用YOLOv8这一先进的深度学习算法,实现了对学生课堂行为的自动、高效和精准监测。YOLOv8在目标检测领域以其卓越的性能和速度著称,通过对学生上课视频或实时摄像头的输入进行深度分析,系统能够准确识别学生的多种行为,如举手、阅读、写作、使用手机、低头等。该系统不仅提高了课堂监测的效率和准确性,还具备实时反馈功能,帮助教
- AI人工智能深度学习算法:卷积神经网络的原理与应用
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:卷积神经网络的原理与应用作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的兴起与深度学习的崛起人工智能(AI)是指计算机科学的一个分支,旨在创造能够执行通常需要人类智能的任务的智能机器,例如学习、解决问题和决策。近年来,人工智能取得了显著的进展,这在很大程度上归功于深度学习的崛起,深度学习是一种强大的机器学习形式,它使用具有多个层的深度神经网络来学习数据中的复杂模式
- 基于深度学习的生产流程自动化
SEU-WYL
深度学习dnn深度学习自动化人工智能
基于深度学习的生产流程自动化是一种将深度学习技术应用于工业生产流程中,以实现更高效、智能化和自适应的生产管理和控制的方式。通过利用深度学习算法对大规模数据进行分析与预测,生产流程自动化系统可以优化资源分配、提高生产效率、降低成本,并适应快速变化的市场需求。1.背景与动机传统自动化的局限:传统的生产自动化通常依赖于预设的规则和固定的流程控制,这种方式在面对复杂、多变的生产环境时,往往显得僵硬和缺乏弹
- 人工智能在医疗领域的应用与展望
王东韦DvWooo
人工智能
引言随着科技的飞速发展,人工智能(AI)正逐渐成为医疗领域的一股强大力量。AI在医疗领域的应用不仅提高了诊疗的准确性和效率,还为患者提供了更加个性化、精准的治疗方案。本文将探讨人工智能在医疗领域的应用及其对未来的影响。一、人工智能在医疗诊断中的应用影像诊断:AI在医学影像诊断中的应用已经取得了显著的成果。通过深度学习算法,AI可以快速、准确地识别X光片、CT扫描和MRI图像中的病变,辅助医生做出诊
- 加速自动驾驶模型迭代,数据存算一体是关键
virtaitech
OrionX自动驾驶人工智能机器学习AIAI算力资源池化科技OrionX
自动驾驶的每一个业务阶段都会涉及到AI深度学习算法和算力的参与,机器视觉,深度学习,传感器技术等均在自动驾驶领域发挥着重要的作用。自动驾驶系统不断迭代的前提是算法的持续优化,目前,自动驾驶发展的瓶颈主要在于AI底层技术和AI算力发展水平上能否实现突破。近日,焱融高性能分布式文件存储系统YRCloudFile联合趋动科技OrionXAI算力资源池化软件与GeminiAI开发训练平台,共同打造自动驾驶
- 基于深度学习的缺陷检测有哪些应用场景
matlabgoodboy
深度学习人工智能
基于深度学习的缺陷检测在众多领域中都得到了广泛应用,其主要优势在于可以通过学习数据更新参数,避免了人工设计复杂的算法流程,同时拥有极高的鲁棒性和精度。以下是一些具体的应用场景:泛半导体和光伏领域:深度学习的缺陷检测在这些领域中有着广泛应用,对产品的质量检测起到了关键作用。通过使用深度学习算法,可以实现对产品表面微小缺陷的精准识别和定位,大大提高了生产效率和产品质量。工业视觉检测:在工业生产线上,深
- 深度学习应该如何入门?
wypdao
人工智能深度学习人工智能
深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。1.基础知识深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。2.学习机器学习吴恩达的机器学习课程是一个很好的入门教程。虽然有些地
- 算法工程师(机器学习)面试题目4---深度学习算法
小葵向前冲
算法工程师算法机器学习深度学习
基础问题CNN1.卷积神经网络和全连接网络的根本不同之处在哪里两者之间的唯一区别是神经网络相邻两层的连接方式。在全连接神经网络中,每相邻两层之间的节点都有边相连,而对于卷积神经网络,相邻两层之间只有部分节点相连;全连接网络缺点:参数太多,计算速度变慢,容易过拟合卷积神经网络:局部链接;权值共享;参数更少,降低过拟合的可能卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络。RNN
- 用 Python 制作一款炫酷的二维码!
Python数据之道
可视化python数据可视化opencvsvg
来源:https://blog.csdn.net/jinyj1转自:深度学习算法与计算机视觉1.导入myqr库下载myqr库使用windows+R键,输入cmd调出命令窗口在黑框里输入(在python3环境下,python2不行)pip install myqr等到提示下载成功就可以了导入myqr库因为我是用pycharm的,所以还需要在pycharm中导入myqr打开pycharm的file-s
- GEE:关于在GEE平台上进行回归计算的若干问题
_养乐多_
GEEGEEjavascript遥感图像处理云计算回归
作者:CSDN@_养乐多_记录一些在GoogleEarthEngine(GEE)平台上进行机器学习回归计算的问题和解释。文章目录一、回归1.1问:GEE平台上可以进行哪些机器学习回归算法?1.2问:为什么只有这四种?哪个精度高?1.3问:GEE上能否运行深度学习算法?一、回归1.1问:GEE平台上可以进行哪些机器学习回归算法?答:GEE平台上有四种机器学习回归算法,分别是随机森林回归、CART(C
- 3D人体姿态估计(教程+代码)
毕设阿力
3d计算机视觉深度学习
3D人体姿态估计是指通过计算机视觉技术和深度学习算法,从图像或视频数据中准确地推测出人体的三维姿态信息,包括关节位置、角度和运动轨迹等。这项技术在虚拟现实、增强现实、运动分析、人体动作捕捉等领域具有广泛的应用前景。实现3D人体姿态估计的关键挑战之一是从二维图像中还原出人体的三维结构。通常,这需要使用多视角图像、深度传感器或者先进的深度学习模型来提取更丰富的信息以重建三维姿态。目前,基于深度学习的方
- 斥资建造全景分割养猪场,AI 养猪,到底靠不靠谱?
不脱发的程序猿
前几天分享一个AI案例:5行Python代码实现图像分割,近日就读到一篇德国基尔大学和哥廷根大学研究的论文:应用在养猪场的全景分割系统,就让我们一起品品。1、背景长时间观察动物的行为很难人工完成,因此通常情况下采取的方案是使用基于传感器的自动化系统。近年来,基于深度学习算法的应用案例,取得了令人满意的效果,特别是物体和关键点探测器已经被用来检测单个动物。尽管效果很好,但边界框和稀疏关键点并不能跟踪
- gpt4国内怎么用 gpt4和chatGPT的区别是什么
氧惠佣金真的高
一、GPT是什么?GPT是一种人工智能技术,全称为"GenerativePre-trainedTransformer",即生成式预训练转换器。它由OpenAI开发,通过大规模的预训练模型和深度学习算法,能够生成高质量的自然语言文本。GPT的工作原理是通过先前的大规模语料库进行训练,从而使模型能够理解语言的结构和上下文。这使得GPT能够以人类般的方式生成自然语言文本,回答问题,进行对话等。大家好,我
- 机器视觉系统中图像分割技术传统方法概论1
欢乐马_e31d
姓名:寇世文学号:21011110234学院:通信工程学院【嵌牛导读】:随着人工智能技术的不断发展,智能机器人领域也得到了空前的发展。尤其是深度神经网络广泛应用于视觉系统中后,取得了许多很明显的成效。对于自主移动机器人来说,视觉系统有着十分重要的作用,而图像分割技术更是在这个系统中担任着十分重要的角色。传统的图像分割技术基本上已经能够将图像的前景和后景分隔开来,但是近年来随着深度学习算法的发展,人
- TensorFlow模型预加载/一次加载多次推理
ZXF_H
pythontensorflowtensorflow人工智能python
前言:深度学习算法的研发需要经过模型构建、训练、测试以及部署,其中在部署过程中的一个基本要求就是保证推理速度,而模型的加载会占用较多的时间,因此模型推理服务在调用前需要对模型进行预加载,即实现一次加载多次推理。实现方法:在with语句下加载模型时,调用图(tf.Graph)与会话(tf.Session)的as_default()方法,将当前图与会话设置为默认图与默认会话,以保证在with语句外也可
- Days 24 Elfboard 读取摄像头视频进行目标检测
yushibing717
音视频目标检测人工智能
Days24Elfboard读取摄像头视频进行目标检测当前,将AI或深度学习算法(如分类、目标检测和轨迹追踪)部署到嵌入式设备,进而实现边缘计算,正成为轻量级深度学习算法发展的一个重要趋势。今天将与各位小伙伴分享一个实际案例:利用ChatGPT在ELF1开发板上成功部署深度学习模型的项目,该项目能够实时读取摄像头视频流并实现对画面中的物体进行精准的目标检测。项目所需的硬件设备:1、基于NXP(恩智
- GPT-4模型的创造力
科学禅道
大模型专栏人工智能AIGC自然语言处理
超级的创造力是GPT-4等高级语言模型的重要特征之一。它们不仅能够精确地模拟和再现各类文本样式、结构和内容,而且在生成新的文本时,能够通过深度学习算法对海量训练数据中捕捉到的模式进行创新性的重组与拓展:词汇创新:基于已学习的大量词汇及其搭配关系,GPT-4能够在生成文本时创造出新颖的表达方式,包括但不限于使用罕见词汇、构建新短语或成语等。概念融合:对于不同领域的复杂概念,GPT-4能够尝试将它们跨
- 2024.02 国内认知大模型汇总
小小晓晓阳
LLM人工智能语言模型gpt
概述大模型,又称为大规模机器学习模型,是一种基于大数据的人工智能技术。它通过深度学习和机器学习的方法,对大量数据进行训练,以实现对复杂问题的高效解决。大模型技术在语音识别、图像识别、自然语言处理等领域有着广泛的应用。大模型的核心是深度学习算法,通过模拟人脑神经网络的工作原理,构建复杂的模型结构,以实现对数据的深度理解和学习。大模型的训练过程需要大量的计算资源和数据,因此,大模型技术的发展离不开硬件
- AI绘画的兴起与人类创造力的共生未来
神气仙人
科技AI作画人工智能
随着科技的日新月异,人工智能(AI)在艺术领域的应用愈发广泛,尤其是在绘画方面取得了显著进展。未来社会中,人们预计会更多地利用AI来进行创作,但这并不意味着AI将会完全取代人类艺术家的传统绘画活动。本文将探讨这一趋势及其对人类绘画艺术可能产生的深远影响。首先,AI绘画技术的发展和普及为创意表达提供了全新的手段。通过深度学习算法训练出的AI能够根据用户输入的文字描述或风格要求生成高质量的图像作品,这
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持