- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
weixin_66009678
pytorch人工智能python
出现如下报错:NVIDIAGeForceRTX3090withCUDAcapabilitysm_86isnotcompatiblewiththecurrentPyTorchinstallation.ThecurrentPyTorchinstallsupportsCUDAcapabilitiessm_37sm_50sm_60sm_70.IfyouwanttousetheNVIDIAGeForceRT
- LangChain核心组件全解析
北辰alk
AIlangchain
文章目录一、核心架构组件1.模型I/O(ModelI/O)2.检索(Retrieval)3.记忆(Memory)4.链(Chains)5.代理(Agents)二、关键支持组件1.回调系统(Callbacks)2.文档加载器(DocumentLoaders)3.文本分割器(TextSplitters)4.向量存储(VectorStores)三、高级架构组件1.工具集成(Tools)2.工作流(Wor
- Android 音频降噪 webrtc 去回声
Android音频降噪webrtc去回声集成AECM模块集成NS模块需要源码请留言集成AECM模块1.通过webrtc官网下载需要模块\modules\audio_processing\aecm2.新建eclipse工程,新建jni文件夹将webrtcaecm模块拷贝到jni文件夹下3.编写本地接口packagecom.wrtcmy.webrtc.aecm;/***Thisclasssupport
- 【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
运器123
AI大模型支持向量机机器学习人工智能ai大数据AI编程算法
一、算法核心思想支持向量机(SVM)是一种强大的监督学习算法,核心思想是通过寻找最优超平面实现分类或回归:分类目标:找到能最大化两类数据间隔的超平面回归目标:找到包含最多数据点的ε带关键概念图解超平面:w·x+b=0/\/\+1|支持向量|-1|●●||●●||●●||_________________|最大间隔(margin)二、数学原理与优化问题1.线性可分情况目标函数:\min_{w,b}\
- 探索Cachier:Python函数的持久化缓存利器
胡同琥Randolph
探索Cachier:Python函数的持久化缓存利器cachierPersistent,stale-free,localandcross-machinecachingforPythonfunctions.项目地址:https://gitcode.com/gh_mirrors/ca/cachier在Python开发的世界中,性能优化和资源管理是永恒的话题。今天,我们要介绍的是一个强大的开源项目——C
- Pyramda:Python 中的函数式编程利器
惠悦颖
Pyramda:Python中的函数式编程利器pyramdaPythonpackagesupportingheavyfunctionalprogrammingthroughcurrying.TranslationoftheRamdalibraryfromjavascripttopython.项目地址:https://gitcode.com/gh_mirrors/py/pyramdaPyramda是
- 宝塔下载pgsql适配spring ai
一入JAVA毁终身
技术精讲spring数据库java
1.宝塔安装pgvector1.先去github下载pgvectorpgvector/pgvector:Open-sourcevectorsimilaritysearchforPostgres2.把压缩包上传到系统文件的/temp下解压,重命名文件名为pgvector,之后命令操作cd/tmpcdpgvectorexportPG_CONFIG=/www/server/pgsql/bin/pg_co
- Neo4j 的向量搜索(Neo4jVector)和常见的向量数据库(比如 Milvus、Qdrant)之间的区别与联系
先说联系(共同点)点内容✅都支持向量检索都可以基于embedding(向量)做相似度搜索,比如给一段文本、找出最相似的若干条记录。✅都用于语义检索你可以把它们用在RAG(检索增强生成)、ChatwithDocs、智能问答、推荐系统等应用里。✅都支持批量插入、查询都可以批量向数据库中插入文本+向量,然后用向量做top-k检索(如search(k=8))。✅都和LangChain集成它们都可以通过la
- 说话人识别python_基于各种分类算法的说话人识别(年龄段识别)
weixin_39673184
说话人识别python
基于各种分类算法的语音分类(年龄段识别)概述实习期间作为帮手打杂进行了一段时间的语音识别研究,内容是基于各种分类算法的语音的年龄段识别,总结一下大致框架,基本思想是:获取语料库TIMIT提取数据特征,进行处理MFCC/i-vectorLDA/PLDA/PCA语料提取,基于分类算法进行分类SVM/SVR/GMM/GBDT...用到的工具有HTK(C,shell)/Kaldi(C++,shell)/L
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- error -- unsupported GNU version gcc later than 10 are not supported;(gcc、g++)
众人(某音、某书同名)
服务器linux运维
服务器跑dit时编译flash-atten以及pytorch的cuda版本检查出错,分别报错题目以及如下:想了下是系统找不到编译器subprocess.CalledProcessError:Command'['which','c++']'returnednon-zeroexitstatus1.备案,以后有人要用12我还得换回来方案一:更改gcc和gcc+的版本没有合适的版本的话需要root权限指定
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- 将有序数组转化为二叉树
本文参考代码随想录将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。思路:寻找分割点,分割点作为当前节点,然后递归左区间和右区间。递归法取中间值为root,递归左区间成为root的左孩子,右区间成为root的右孩子,最后返回rootclassSolution{private:TreeNode*traversal(vector&nums,intleft,intright){//若数组为空则
- SVG格式深度解析与Path应用实战:从原理到企业级全场景开发(实战版)
一、简介在数字图形领域,SVG(ScalableVectorGraphics)凭借其矢量特性、可编辑性和交互能力,成为现代设计和开发的核心工具。本文将从SVG的基础原理出发,深入解析其技术特性,并与主流图像格式(如JPEG、PNG、PLT等)进行对比分析。通过企业级应用案例,结合代码示例和Mermaid图表,帮助开发者全面掌握SVG的应用场景与开发技巧,实现从零到一的高效实践。二、SVG格式的核心
- 无法删除或者修改注册表权限不够,如何修改注册表的权限
番知了
注册表Windows权限更改设置Windows权限
目录1如何找到注册表项(详细步骤)方法步骤(图文步骤)此方法适用于你遇到的以下问题:2为什么这里不是文件位置?3执行修改时务必谨慎如何找到注册表项(详细步骤)方法步骤(图文步骤)打开注册表编辑器按键盘组合键Win+R输入命令:regedit点击确定,打开注册表编辑器。定位你需要修改的注册表项,如:注册表左侧面板树状结构中定位到路径:HKEY_LOCAL_MACHINE\SOFTWARE\Micro
- 《支持向量机(SVM)在医疗领域的变革性应用》
CodeJourney.
支持向量机算法机器学习
在医疗科技日新月异的今天,先进的数据分析与机器学习技术正逐渐成为提升诊疗水平、助力医学研究的关键力量。支持向量机(SVM),凭借其独特的优势,在医疗这片复杂且对精准度要求极高的领域崭露头角,带来诸多令人瞩目的应用成果。一、疾病诊断:癌症早期筛查的“火眼金睛”癌症,作为全球健康的“头号杀手”,早期诊断对提升患者生存率意义非凡。在乳腺癌筛查领域,SVM发挥着重要作用。医疗科研人员收集大量乳腺组织的影像
- 支持向量机(SVM)在肝脏CT/MRI图像分类(肝癌检测)中的应用及实现
猿享天开
医学影像支持向量机机器学习人工智能算法
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- 数据结构与算法:贪心(二)
前言要加快速度啊!!一、最短无序连续子数组classSolution{public:intfindUnsortedSubarray(vector&nums){intn=nums.size();intMax=-1e9;intright=-1;//最右不符合的位置for(inti=0;inums[i])//遇到不符合递增规律的数{right=i;}Max=max(Max,nums[i]);}intMi
- AtCoder ABC344 A-E题解
seanli1008
#AtCoder题解题解
传送门:ABC344咕了一个周的题解。省流:D>E+不可以总司令专场ohhhhhhhhhhhhhhhhhhhhhhhhhhProblemA:善用STL。#includeusingnamespacestd;intmain(){stringS;cin>>S;inti=S.find('|');j=S.find('|',i+1);coutusingnamespacestd;intmain(){vector
- 11.2.0.4 awr快照无法正常生成
某日检查数据库性能,发现数据库awr快照没有正常生成咨询supportsr执行如下脚本DearCustomer,1.Pleaseprovidethebelowscriptoutputoninstance3:conn/assysdbasetpages1000setnum20altersessionsetnls_date_format='yyyy-mm-ddhh24:mi:ss';altersessi
- 现代 C++ 容器深度解析及实践
mxpan
c++c++开发语言
一、线性容器:std::array与std::forward_list1.std::array:固定大小的高效容器在传统C++中,数组与vector的抉择常让人纠结:数组缺乏安全检查,vector存在动态扩容开销。C++11引入的std::array完美平衡了两者优势:特性解析:编译期确定大小,内存连续分配,访问效率与C数组一致;封装了迭代器、size()、empty()等标准接口,兼容STL算法
- C++从入门到放弃
一家之主呆呆蟹
C++c++
C++学习笔记--目录C++学习笔记1.C++命名空间2.继承与多态3.函数重载4.引用5.构造函数与析构函数6.初始化列表7.explicit关键字8.static静态成员和友元函数与友元类、内部类9.模板10.string11.vector12.List13.vector和list的区别及使用场景14.deque15.stack16.queue17.priority_queue18.set|m
- 『 C++入門到放棄 』 - vector 容器
逐花归海.
c++数据结构开发语言笔记
一、什麼是vectorvector是C++提供的一個容器(container),其底層邏輯類似於順序表二、vector接口(1)宣告&初始化std::vectorv;//空vectorstd::vectorv(5);//初始化為5個0(不給值默認為0)std::vectorv(5,10);//初始化為5個10std::vectorv={1,2,3};//使用初始化列表(2)基本操作v.push_b
- 面试必问之JVM原理
teayear
面试jvm职场和发展
1:什么是JVMJVM是JavaVirtualMachine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- jvm原理和调优实战
故事很腻i
javajvmjava
一、JVM核心基础1.1JVM架构概述Java虚拟机(JavaVirtualMachine,JVM)是Java程序的运行核心,其核心架构包含四大模块:1.1.1类加载子系统功能:负责将class文件加载到JVM内存中,通过ClassLoader实现加载流程:加载:通过类的全限定名获取二进制字节流验证:确保字节流符合JVM规范准备:为类变量分配内存并设置初始值解析:将符号引用替换为直接引用初始化:执
- 从维基百科到知识图谱:用 DSPy、OpenAI 和 TiDB 构建 GraphRAG 的奇妙旅程
步子哥
AGI通用人工智能知识图谱tidb人工智能
在信息爆炸的时代,如何快速从海量数据中提取有用信息,成为了技术发展的重要方向。传统的RAG(Retrieval-AugmentedGeneration)方法虽然在信息检索领域表现出色,但随着需求复杂度的提升,GraphRAG(基于知识图谱的RAG)逐渐成为更优的解决方案。本文将带您一步步了解如何利用DSPy、OpenAI和TiDBVectorDatabase,从维基百科数据构建一个GraphRAG
- feign调用get请求的接口时,出现“Request method ‘POST‘ not supported“
皮皮小澜孩
java开发语言feign
上面是错误的写法下面是正确的写法其实就是在feign接口的参数中加了个@SpringQueryMap注解@SpringQueryMap是微服务之间调用,使用openfeign通过GET请求方式来处理通过实体类来传参情况的注解。注意:被@SpringQueryMap注解的对象只能有一个如果需要传递多个对象,可以使用map传参,并且多个对象中不能出现相同的属性名,否则会覆盖
- Feign解决Get请求自动转化成POST的问题
Java程序源
JavaGet请求自动转化成POSTFeign不支持请求方法“POST”get请求报错不支持post微信事件推送
记一次无厘头报错:Requestmethod‘POST’notsupported看起来很简单呐,就是不支持post请求嘛!!场景:对接研究三方接口(微信推送),三方接口请求方式是GET方式,之前参数接收也是顺利完美的,但是研究个性消息推送的时候出现了问题,设置了推广二维码,用户扫码的关注后,收不到推送消息,系统直接报“Requestmethod‘POST’notsupported”错误,所以问题点
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep