JavaScript常见排序
以下两个函数是排序中会用到的通用函数,就不一一写了
function checkArray(array) { if (!array || array.length <= 2) return } function swap(array, left, right) { let rightValue = array[right] array[right] = array[left] array[left] = rightValue }
冒泡排序
冒泡排序的原理如下,从第一个元素开始,把当前元素和下一个索引元素进行比较。如果当前元素大,那么就交换位置,重复操作直到比较到最后一个元素,那么此时最后一个元素就是该数组中最大的数。下一轮重复以上操作,但是此时最后一个元素已经是最大数了,所以不需要再比较最后一个元素,只需要比较到 length - 1
的位置。
以下是实现该算法的代码
function bubble(array) { checkArray(array); for (let i = array.length - 1; i > 0; i--) { // 从 0 到 `length - 1` 遍历 for (let j = 0; j < i; j++) { if (array[j] > array[j + 1]) swap(array, j, j + 1) } } return array; }
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1
,去掉常数项以后得出时间复杂度是 O(n * n)
插入排序
插入排序的原理如下。第一个元素默认是已排序元素,取出下一个元素和当前元素比较,如果当前元素大就交换位置。那么此时第一个元素就是当前的最小数,所以下次取出操作从第三个元素开始,向前对比,重复之前的操作。
以下是实现该算法的代码
function insertion(array) { checkArray(array); for (let i = 1; i < array.length; i++) { for (let j = i - 1; j >= 0 && array[j] > array[j + 1]; j--) swap(array, j, j + 1); } return array; }
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1
,去掉常数项以后得出时间复杂度是 O(n * n)
选择排序
选择排序的原理如下。遍历数组,设置最小值的索引为 0,如果取出的值比当前最小值小,就替换最小值索引,遍历完成后,将第一个元素和最小值索引上的值交换。如上操作后,第一个元素就是数组中的最小值,下次遍历就可以从索引 1 开始重复上述操作。
以下是实现该算法的代码
function selection(array) { checkArray(array); for (let i = 0; i < array.length - 1; i++) { let minIndex = i; for (let j = i + 1; j < array.length; j++) { minIndex = array[j] < array[minIndex] ? j : minIndex; } swap(array, i, minIndex); } return array; }
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1
,去掉常数项以后得出时间复杂度是 O(n * n)
归并排序
归并排序的原理如下。递归的将数组两两分开直到最多包含两个元素,然后将数组排序合并,最终合并为排序好的数组。假设我有一组数组 [3, 1, 2, 8, 9, 7, 6]
,中间数索引是 3,先排序数组 [3, 1, 2, 8]
。在这个左边数组上,继续拆分直到变成数组包含两个元素(如果数组长度是奇数的话,会有一个拆分数组只包含一个元素)。然后排序数组 [3, 1]
和 [2, 8]
,然后再排序数组 [1, 3, 2, 8]
,这样左边数组就排序完成,然后按照以上思路排序右边数组,最后将数组 [1, 2, 3, 8]
和 [6, 7, 9]
排序。
以下是实现该算法的代码
function sort(array) { checkArray(array); mergeSort(array, 0, array.length - 1); return array; } function mergeSort(array, left, right) { // 左右索引相同说明已经只有一个数 if (left === right) return; // 等同于 `left + (right - left) / 2` // 相比 `(left + right) / 2` 来说更加安全,不会溢出 // 使用位运算是因为位运算比四则运算快 let mid = parseInt(left + ((right - left) >> 1)); mergeSort(array, left, mid); mergeSort(array, mid + 1, right); let help = []; let i = 0; let p1 = left; let p2 = mid + 1; while (p1 <= mid && p2 <= right) { help[i++] = array[p1] < array[p2] ? array[p1++] : array[p2++]; } while (p1 <= mid) { help[i++] = array[p1++]; } while (p2 <= right) { help[i++] = array[p2++]; } for (let i = 0; i < help.length; i++) { array[left + i] = help[i]; } return array; }
以上算法使用了递归的思想。递归的本质就是压栈,每递归执行一次函数,就将该函数的信息(比如参数,内部的变量,执行到的行数)压栈,直到遇到终止条件,然后出栈并继续执行函数。对于以上递归函数的调用轨迹如下
mergeSort(data, 0, 6) // mid = 3 mergeSort(data, 0, 3) // mid = 1 mergeSort(data, 0, 1) // mid = 0 mergeSort(data, 0, 0) // 遇到终止,回退到上一步 mergeSort(data, 1, 1) // 遇到终止,回退到上一步 // 排序 p1 = 0, p2 = mid + 1 = 1 // 回退到 `mergeSort(data, 0, 3)` 执行下一个递归 mergeSort(2, 3) // mid = 2 mergeSort(3, 3) // 遇到终止,回退到上一步 // 排序 p1 = 2, p2 = mid + 1 = 3 // 回退到 `mergeSort(data, 0, 3)` 执行合并逻辑 // 排序 p1 = 0, p2 = mid + 1 = 2 // 执行完毕回退 // 左边数组排序完毕,右边也是如上轨迹
该算法的操作次数是可以这样计算:递归了两次,每次数据量是数组的一半,并且最后把整个数组迭代了一次,所以得出表达式 2T(N / 2) + T(N)
(T 代表时间,N 代表数据量)。根据该表达式可以套用 该公式 得出时间复杂度为 O(N * logN)
快排
快排的原理如下。随机选取一个数组中的值作为基准值,从左至右取值与基准值对比大小。比基准值小的放数组左边,大的放右边,对比完成后将基准值和第一个比基准值大的值交换位置。然后将数组以基准值的位置分为两部分,继续递归以上操作。
以下是实现该算法的代码
function sort(array) { checkArray(array); quickSort(array, 0, array.length - 1); return array; } function quickSort(array, left, right) { if (left < right) { swap(array, , right) // 随机取值,然后和末尾交换,这样做比固定取一个位置的复杂度略低 let indexs = part(array, parseInt(Math.random() * (right - left + 1)) + left, right); quickSort(array, left, indexs[0]); quickSort(array, indexs[1] + 1, right); } } function part(array, left, right) { let less = left - 1; let more = right; while (left < more) { if (array[left] < array[right]) { // 当前值比基准值小,`less` 和 `left` 都加一 ++less; ++left; } else if (array[left] > array[right]) { // 当前值比基准值大,将当前值和右边的值交换 // 并且不改变 `left`,因为当前换过来的值还没有判断过大小 swap(array, --more, left); } else { // 和基准值相同,只移动下标 left++; } } // 将基准值和比基准值大的第一个值交换位置 // 这样数组就变成 `[比基准值小, 基准值, 比基准值大]` swap(array, right, more); return [less, more]; }
该算法的复杂度和归并排序是相同的,但是额外空间复杂度比归并排序少,只需 O(logN),并且相比归并排序来说,所需的常数时间也更少。
堆排序
堆排序利用了二叉堆的特性来做,二叉堆通常用数组表示,并且二叉堆是一颗完全二叉树(所有叶节点(最底层的节点)都是从左往右顺序排序,并且其他层的节点都是满的)。二叉堆又分为大根堆与小根堆。
- 大根堆是某个节点的所有子节点的值都比他小
- 小根堆是某个节点的所有子节点的值都比他大
堆排序的原理就是组成一个大根堆或者小根堆。以小根堆为例,某个节点的左边子节点索引是 i * 2 + 1
,右边是 i * 2 + 2
,父节点是 (i - 1) /2
。
- 首先遍历数组,判断该节点的父节点是否比他小,如果小就交换位置并继续判断,直到他的父节点比他大
- 重新以上操作 1,直到数组首位是最大值
- 然后将首位和末尾交换位置并将数组长度减一,表示数组末尾已是最大值,不需要再比较大小
- 对比左右节点哪个大,然后记住大的节点的索引并且和父节点对比大小,如果子节点大就交换位置
- 重复以上操作 3 - 4 直到整个数组都是大根堆。
以下是实现该算法的代码
function heap(array) { checkArray(array); // 将最大值交换到首位 for (let i = 0; i < array.length; i++) { heapInsert(array, i); } let size = array.length; // 交换首位和末尾 swap(array, 0, --size); while (size > 0) { heapify(array, 0, size); swap(array, 0, --size); } return array; } function heapInsert(array, index) { // 如果当前节点比父节点大,就交换 while (array[index] > array[parseInt((index - 1) / 2)]) { swap(array, index, parseInt((index - 1) / 2)); // 将索引变成父节点 index = parseInt((index - 1) / 2); } } function heapify(array, index, size) { let left = index * 2 + 1; while (left < size) { // 判断左右节点大小 let largest = left + 1 < size && array[left] < array[left + 1] ? left + 1 : left; // 判断子节点和父节点大小 largest = array[index] < array[largest] ? largest : index; if (largest === index) break; swap(array, index, largest); index = largest; left = index * 2 + 1; } }
以上代码实现了小根堆,如果需要实现大根堆,只需要把节点对比反一下就好。
该算法的复杂度是 O(logN)
参考总结资料:https://juejin.im/post/5ba34e54e51d450e5162789b#heading-87