HashMap实现原理(JDK1.8)

HashMap实现原理(JDK1.8

 

1. HashMap 概述:

HashMap 是基于哈希表的Map 接口的非同步实现。此实现提供所有可选的映射操作,

并允许使用null 值和null 键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

initial capacity 16

load factor 0.75

thresholdHashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor

结合负载因子的定义公式可知,threshold就是在此Loadfactorlength(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1

size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。

JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法

Hash算法本质上就是三步:取keyhashCode值、高位运算、取模运算。

HashMapput方法实现

put函数大致的思路为:

1.       keyhashCode()hash,然后再计算index;

2.       如果没碰撞直接放到bucket里;

3.       如果碰撞了,以链表的形式存在buckets后;

4.       如果碰撞导致链表过长(大于等于TREEIFY_THRESHOLD),就把链表转换成红黑树;

5.       如果节点已经存在就替换old value(保证key的唯一性)

6.       如果bucket满了(超过load factor*current capacity),就要resize

HashMapget方法实现

思路如下:

1.      bucket里的第一个节点,直接命中;

2.      如果有冲突,则通过key.equals(k)去查找对应的entry 
若为树,则在树中通过key.equals(k)查找,O(logn) 
若为链表,则在链表中通过key.equals(k)查找,O(n)

 

/**

     * The default initial capacity - MUST be a power of two.

     */

    staticfinalintDEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

 

    /**

     * The maximum capacity, used if a higher value is implicitly specified

     * by either of the constructors with arguments.

     * MUST be a power of two <= 1<<30.

     */

    staticfinalintMAXIMUM_CAPACITY = 1 << 30;

 

    /**

     * The load factor used when none specified in constructor.

     */

    staticfinalfloatDEFAULT_LOAD_FACTOR = 0.75f;

 

    /**

     * The bin count threshold for using a tree rather than list for a

     * bin.  Bins are converted to trees when adding an element to a

     * bin with at least this many nodes. The value must be greater

     * than 2 and should be at least 8 to mesh with assumptions in

     * tree removal about conversion back to plain bins upon

     * shrinkage.

     */

    staticfinalintTREEIFY_THRESHOLD = 8;

 

    /**

     * The bin count threshold for untreeifying a (split) bin during a

     * resize operation. Should be less than TREEIFY_THRESHOLD, and at

     * most 6 to mesh with shrinkage detection under removal.

     */

    staticfinalintUNTREEIFY_THRESHOLD = 6;

 

    /**

     * The smallest table capacity for which bins may be treeified.

     * (Otherwise the table is resized if too many nodes in a bin.)

     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts

     * between resizing and treeification thresholds.

     */

    staticfinalintMIN_TREEIFY_CAPACITY = 64;

 

    /**

     * Basic hash bin node, used for most entries.  (See below for

     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)

     */

 

HashMap 底层就是一个数组结构,数组中的每一项又是一个链表。

当新建一个HashMap 的时候,就会初始化一个数组。

 

 

 

staticclass Node implements Map.Entry {

        finalinthash;

        final K key;

        V value;

        Node next;

 

        Node(inthash, K key, V value, Node next) {

            this.hash = hash;

            this.key = key;

            this.value = value;

            this.next = next;

        }

 

        publicfinal K getKey()        { returnkey; }

        publicfinal V getValue()      { returnvalue; }

        publicfinal String toString() { returnkey + "=" + value; }

 

        publicfinalint hashCode() {

            return Objects.hashCode(key) ^ Objects.hashCode(value);

        }

 

        publicfinal V setValue(V newValue) {

            V oldValue = value;

            value = newValue;

            returnoldValue;

        }

 

        publicfinalboolean equals(Object o) {

            if (o == this)

                returntrue;

            if (oinstanceof Map.Entry) {

                Map.Entry e = (Map.Entry)o;

                if (Objects.equals(key, e.getKey()) &&

                    Objects.equals(value, e.getValue()))

                    returntrue;

            }

            returnfalse;

        }

    }

/**

     * The table, initialized on first use, and resized as

     * necessary. When allocated, length is always a power of two.

     * (We also tolerate length zero in some operations to allow

     * bootstrapping mechanics that are currently not needed.)

     */

    transient Node[] table;

 

    /**

     * Holds cached entrySet(). Note that AbstractMap fields are used

     * for keySet() and values().

     */

    transient Set> entrySet;

 

    /**

     * The number of key-value mappings contained in this map.

     */

    transientintsize;

 

    /**

     * The number of times this HashMap has been structurally modified

     * Structural modifications are those that change the number of mappings in

     * the HashMap or otherwise modify its internal structure (e.g.,

     * rehash).  This field is used to make iterators on Collection-views of

     * the HashMap fail-fast.  (See ConcurrentModificationException).

     */

    transientintmodCount;

 

    /**

     * The next size value at which to resize (capacity * load factor).

     *

     * @serial

     */

    // (The javadoc description is true upon serialization.

    // Additionally, if the table array has not been allocated, this

    // field holds the initial array capacity, or zero signifying

    // DEFAULT_INITIAL_CAPACITY.)

    intthreshold;

 

    /**

     * The load factor for the hash table.

     *

     * @serial

     */

    finalfloatloadFactor;

存储

public V put(K key, V value) {

        return putVal(hash(key), key, value, false, true);

}

 

 

摘要

HashMapJava程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDKJava Developmet Kit)版本的更新,JDK1.8HashMap底层的实现进行了优化,例如引入红黑树的数据结构和扩容的优化等。本文结合JDK1.7JDK1.8的区别,深入探讨HashMap的结构实现和功能原理。

简介

Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMapHashtableLinkedHashMapTreeMap,类继承关系如下图所示:

下面针对各个实现类的特点做一些说明:

(1) HashMap:它根据键的hashCode存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的null,允许多条记录的nullHashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 CollectionssynchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap

(2) HashtableHashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。

(3) LinkedHashMapLinkedHashMapHashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。

(4) TreeMapTreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。

对于上述四种Map类型的类,要求映射中的key不可变对象。不可变对象是该对象在创建后它的哈希值不会被改变。如果对象的哈希值发生变化,Map对象很可能就定位不到映射的位置了。

通过上面的比较,我们知道了HashMapJavaMap家族中一个普通成员,鉴于它可以满足大多数场景的使用条件,所以是使用频度最高的一个。下文我们主要结合源码,从存储结构、常用方法分析、扩容以及安全性等方面深入讲解HashMap的工作原理。

内部实现

搞清楚HashMap,首先需要知道HashMap是什么,即它的存储结构-字段;其次弄明白它能干什么,即它的功能实现-方法。下面我们针对这两个方面详细展开讲解。

存储结构-字段

从结构实现来讲,HashMap数组+链表+红黑树JDK1.8增加了红黑树部分)实现的,如下如所示。

这里需要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优点呢?

(1) 从源码可知,HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。我们来看Node[JDK1.8]是何物。

static class Node implements Map.Entry {
        final int hash;    //用来定位数组索引位置
        final K key;
        V value;
        Node next;   //链表的下一个node
 
        Node(int hash, K key, V value, Node next) { ... }
        public final K getKey(){ ... }
        public final V getValue() { ... }
        public final String toString() { ... }
        public final int hashCode() { ... }
        public final V setValue(V newValue) { ... }
        public final boolean equals(Object o) { ... }
}

NodeHashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象

(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法链地址法等来解决问题,JavaHashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:

    map.put("美团","小美");

系统将调用"美团"这个keyhashCode()方法得到其hashCode 值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算(高位运算取模运算,下文有介绍)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。当然Hash算法计算结果越分散均匀Hash碰撞的概率就越小,map存取效率就会越高

如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[]table)占用空间又少呢?答案就是好的Hash算法扩容机制

在理解Hash和扩容流程之前,我们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下:

     int threshold;             // 所能容纳的key-value对极限 
     final float loadFactor;    // 负载因子
     int modCount;  
     int size;

首先,Node[] table的初始化长度length(默认值是16)Load factor为负载因子(默认值是0.75)thresholdHashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多

结合负载因子的定义公式可知,threshold就是在此Load factorlength(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容)扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1

size这个字段其实很好理解,就是HashMap实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化

HashMap中,哈希桶数组table的长度length大小必须为2n次方(一定是合数),这是一种非常规的设计,常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,具体证明可以参考http://blog.csdn.net/liuqiyao_01/article/details/14475159Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。

这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。本文不再对红黑树展开讨论,想了解更多红黑树数据结构的工作原理可以参考http://blog.csdn.net/v_july_v/article/details/6105630

功能实现-方法

HashMap的内部功能实现很多,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。

1. 确定哈希桶数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):

方法一:
static final int hash(Object key) {   //jdk1.8 & jdk1.7
     int h;
     // h = key.hashCode() 为第一步 hashCode
     // h ^ (h >>> 16)  为第二步 高位参与运算
     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
     return h & (length-1);  //第三步 取模运算
}

这里的Hash算法本质上就是三步:keyhashCode值、高位运算、取模运算

对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。

这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2n次方,这是HashMap在速度上的优化。当length总是2n次方时,h& (length-1)运算等价于length取模,也就是h%length,但是&%具有更高的效率

JDK1.8的实现中,优化了高位运算的算法,通过hashCode()16异或16实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组tablelength比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

下面举例说明下,ntable的长度。

2. 分析HashMapput方法

HashMapput方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。

.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;

.根据键值key计算hash值得到插入的数组索引i,如果table[i]= =null,直接新建节点添加,转向,如果table[i]不为空,转向

.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向,这里的相同指的是hashCode以及equals

.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向

.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;

.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容

JDK1.8HashMapput方法源码如下:

 1 public V put(K key, V value) {
 2     // keyhashCode()hash
 3     return putVal(hash(key), key, value, false, true);
 4 }
 5 
 6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 7                boolean evict) {
 8     Node[] tab; Node p; int n, i;
 9     // 步骤tab为空则创建
10     if ((tab = table) == null || (n = tab.length) == 0)
11         n = (tab = resize()).length;
12     // 步骤:计算index,并对null做处理 
13     if ((p = tab[i = (n - 1) & hash]) == null) 
14         tab[i] = newNode(hash, key, value, null);
15     else {
16         Node e; K k;
17         // 步骤:节点key存在,直接覆盖value
18         if (p.hash == hash &&
19             ((k = p.key) == key || (key != null && key.equals(k))))
20             e = p;
21         // 步骤:判断该链为红黑树
22         else if (p instanceof TreeNode)
23             e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
24         // 步骤:该链为链表
25         else {
26             for (int binCount = 0; ; ++binCount) {
27                 if ((e = p.next) == null) {
28                     p.next = newNode(hash, key,value,null);
                        //链表长度大于8转换为红黑树进行处理
29                     if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
30                         treeifyBin(tab, hash);
31                     break;
32                 }
                    // key已经存在直接覆盖value
33                 if (e.hash == hash &&
34                     ((k = e.key) == key || (key != null && key.equals(k)))) 
35                            break;
36                 p = e;
37             }
38         }
39         
40         if (e != null) { // existing mapping for key
41             V oldValue = e.value;
42             if (!onlyIfAbsent || oldValue == null)
43                 e.value = value;
44             afterNodeAccess(e);
45             return oldValue;
46         }
47     }
 
48     ++modCount;
49     // 步骤:超过最大容量 就扩容
50     if (++size > threshold)
51         resize();
52     afterNodeInsertion(evict);
53     return null;
54 }

3. 扩容机制

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶

我们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。

 1 void resize(int newCapacity) {   //传入新的容量
 2     Entry[] oldTable = table;    //引用扩容前的Entry数组
 3     int oldCapacity = oldTable.length;         
 4     if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)
 5         threshold = Integer.MAX_VALUE; //修改阈值int的最大值(2^31-1),这样以后就不会扩容了
 6         return;
 7     }
 9     Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组
10     transfer(newTable);                         //!!将数据转移到新的Entry数组里
11     table = newTable;                           //HashMaptable属性引用新的Entry数组
12     threshold = (int)(newCapacity * loadFactor);//修改阈值
13 }

这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

 1 void transfer(Entry[] newTable) {
 2     Entry[] src = table;                   //src引用了旧的Entry数组
 3     int newCapacity = newTable.length;
 4     for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
 5         Entry e = src[j];             //取得旧Entry数组的每个元素
 6         if (e != null) {
 7             src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
 8             do {
 9                 Entry next = e.next;
10                 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
11                 e.next = newTable[i]; //标记[1]
12                 newTable[i] = e;      //将元素放在数组上
13                 e = next;             //访问下一个Entry链上的元素
14             } while (e != null);
15         }
16     }
17 }

newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。

下面举个例子说明下扩容过程。假设了我们的hash算法就是简单的用keymod 一下表的大小(也就是数组的长度)。其中的哈希桶数组tablesize=2所以key = 375put顺序依次为 573。在mod 2以后都冲突在table[1]这里了。这里假设负载因子loadFactor=1,即当键值对的实际大小size大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize4,然后所有的Node重新rehash的过程。

下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,ntable的长度,图(a)表示扩容前key1key2两种key确定索引位置的示例,图(b)表示扩容后key1key2两种key确定索引位置的示例,其中hash1key1对应的哈希与高位运算结果。

元素在重新计算hash之后,因为n变为2倍,那么n-1mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit1还是0就好了,是0的话索引没变,是1的话索引变成原索引+oldCap,可以看看下图为16扩充为32resize示意图:

这个设计确实非常的巧妙,既省去了重新计算hash的时间,而且同时,由于新增的1bit0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。有兴趣的同学可以研究下JDK1.8resize源码,写的很赞,如下:

 1 final Node[] resize() {
 2     Node[] oldTab = table;
 3     int oldCap = (oldTab == null) ? 0 : oldTab.length;
 4     int oldThr = threshold;
 5     int newCap, newThr = 0;
 6     if (oldCap > 0) {
 7         // 超过最大值就不再扩充了,就只好随你碰撞去吧
 8         if (oldCap >= MAXIMUM_CAPACITY) {
 9             threshold = Integer.MAX_VALUE;
10             return oldTab;
11         }
12         // 没超过最大值,就扩充为原来的2
13         else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14                  oldCap >= DEFAULT_INITIAL_CAPACITY)
15             newThr = oldThr << 1; // double threshold
16     }
17     else if (oldThr > 0) // initial capacity was placed in threshold
18         newCap = oldThr;
19     else {               // zero initial threshold signifies using defaults
20         newCap = DEFAULT_INITIAL_CAPACITY;
21         newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22     }
23     // 计算新的resize上限
24     if (newThr == 0) {
25 
26         float ft = (float)newCap * loadFactor;
27         newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28                   (int)ft : Integer.MAX_VALUE);
29     }
30     threshold = newThr;
31     @SuppressWarnings({"rawtypes""unchecked"})
32         Node[] newTab = (Node[])new Node[newCap];
33     table = newTab;
34     if (oldTab != null) {
35         // 把每个bucket都移动到新的buckets
36         for (int j = 0; j < oldCap; ++j) {
37             Node e;
38             if ((e = oldTab[j]) != null) {
39                 oldTab[j] = null;
40                 if (e.next == null)
41                     newTab[e.hash & (newCap - 1)] = e;
42                 else if (e instanceof TreeNode)
43                     ((TreeNode)e).split(this, newTab, j, oldCap);
44                 else { // 链表优化重hash的代码块
45                     Node loHead = null, loTail = null;
46                     Node hiHead = null, hiTail = null;
47                     Node next;
48                     do {
49                         next = e.next;
50                         // 原索引
51                         if ((e.hash & oldCap) == 0) {
52                             if (loTail == null)
53                                 loHead = e;
54                             else
55                                 loTail.next = e;
56                             loTail = e;
57                         }
58                         // 原索引+oldCap
59                         else {
60                             if (hiTail == null)
61                                 hiHead = e;
62                             else
63                                 hiTail.next = e;
64                             hiTail = e;
65                         }
66                     } while ((e = next) != null);
67                     // 原索引放到bucket
68                     if (loTail != null) {
69                         loTail.next = null;
70                         newTab[j] = loHead;
71                     }
72                     // 原索引+oldCap放到bucket
73                     if (hiTail != null) {
74                         hiTail.next = null;
75                         newTab[j + oldCap] = hiHead;
76                     }
77                 }
78             }
79         }
80     }
81     return newTab;
82 }

线程安全性

在多线程使用场景中,应该尽量避免使用线程不安全的HashMap,而使用线程安全的ConcurrentHashMap。那么为什么说HashMap是线程不安全的,下面举例子说明在并发的多线程使用场景中使用HashMap可能造成死循环。代码例子如下(便于理解,仍然使用JDK1.7的环境)

public class HashMapInfiniteLoop {  
 
    private static HashMap map = new HashMap(20.75f);  
    public static void main(String[] args) {  
        map.put(5 "C");  
 
        new Thread("Thread1") {  
            public void run() {  
                map.put(7, "B");  
                System.out.println(map);  
            };  
        }.start();  
        new Thread("Thread2") {  
            public void run() {  
                map.put(3, "A);  
                System.out.println(map);  
            };  
        }.start();        
    }  
}

其中,map初始化为一个长度为2的数组,loadFactor=0.75threshold=2*0.75=1,也就是说当put第二个key的时候,map就需要进行resize

通过设置断点让线程1和线程2同时debugtransfer方法(3.3小节代码块)的首行。注意此时两个线程已经成功添加数据。放开thread1的断点至transfer方法的“Entry next = e.next;” 这一行;然后放开线程2的的断点,让线程2进行resize。结果如下图。

注意,Thread1 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。

线程一被调度回来执行,先是执行 newTalbe[i] = e然后是e = next,导致了e指向了key(7),而下一次循环的next= e.next导致了next指向了key(3)

e.next = newTable[i] 导致 key(3).next 指向了 key(7)。注意:此时的key(7).next已经指向了key(3)环形链表就这样出现了。

于是,当我们用线程一调用map.get(11)时,悲剧就出现了——Infinite Loop

JDK1.8JDK1.7的性能对比

HashMap中,如果key经过hash算法得出的数组索引位置全部不相同,即Hash算法非常好,那样的话,getKey方法的时间复杂度就是O(1),如果Hash算法技术的结果碰撞非常多,假如Hash算极其差,所有的Hash算法结果得出的索引位置一样,那样所有的键值对都集中到一个中,或者在一个链表中,或者在一个红黑树中,时间复杂度分别为O(n)O(lgn)鉴于JDK1.8做了多方面的优化,总体性能优于JDK1.7,下面我们从两个方面用例子证明这一点。

Hash较均匀的情况

为了便于测试,我们先写一个类Key,如下:

class Key implements Comparable {
 
    private final int value;
 
    Key(int value) {
        this.value = value;
    }
 
    @Override
    public int compareTo(Key o) {
        return Integer.compare(this.value, o.value);
    }
 
    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass())
            return false;
        Key key = (Key) o;
        return value == key.value;
    }
 
    @Override
    public int hashCode() {
        return value;
    }
}

这个类复写了equals方法,并且提供了相当好的hashCode函数,任何一个值的hashCode都不会相同,因为直接使用value当做hashcode。为了避免频繁的GC,我将不变的Key实例缓存了起来,而不是一遍一遍的创建它们。代码如下:

public class Keys {
 
    public static final int MAX_KEY = 10_000_000;
    private static final Key[] KEYS_CACHE = new Key[MAX_KEY];
 
    static {
        for (int i = 0; i < MAX_KEY; ++i) {
            KEYS_CACHE[i] = new Key(i);
        }
    }
 
    public static Key of(int value) {
        return KEYS_CACHE[value];
    }
}

现在开始我们的试验,测试需要做的仅仅是,创建不同sizeHashMap110100......10000000),屏蔽了扩容的情况,代码如下:

   static void test(int mapSize) {
 
        HashMap map = new HashMap(mapSize);
        for (int i = 0; i < mapSize; ++i) {
            map.put(Keys.of(i), i);
        }
 
        long beginTime = System.nanoTime(); //获取纳秒
        for (int i = 0; i < mapSize; i++) {
            map.get(Keys.of(i));
        }
        long endTime = System.nanoTime();
        System.out.println(endTime - beginTime);
    }
 
    public static void main(String[] args) {
        for(int i=10;i<= 1000 0000;i*= 10){
            test(i);
        }
    }

在测试中会查找不同的值,然后度量花费的时间,为了计算getKey的平均时间,我们遍历所有的get方法,计算总的时间,除以key的数量,计算一个平均值,主要用来比较,绝对值可能会受很多环境因素的影响。结果如下:

通过观测测试结果可知,JDK1.8的性能要高于JDK1.7 15%以上,在某些size的区域上,甚至高于100%。由于Hash算法较均匀,JDK1.8引入的红黑树效果不明显,下面我们看看Hash不均匀的的情况。

Hash极不均匀的情况

假设我们又一个非常差的Key,它们所有的实例都返回相同的hashCode值。这是使用HashMap最坏的情况。代码修改如下:

class Key implements Comparable {
 
    //...
 
    @Override
    public int hashCode() {
        return 1;
    }
}

仍然执行main方法,得出的结果如下表所示:

从表中结果中可知,随着size的变大JDK1.7的花费时间是增长的趋势,而JDK1.8是明显的降低趋势,并且呈现对数增长稳定。当一个链表太长的时候,HashMap会动态的将它替换成一个红黑树,这话的话会将时间复杂度从O(n)降为O(logn)hash算法均匀和不均匀所花费的时间明显也不相同,这两种情况的相对比较,可以说明一个好的hash算法的重要性。

      测试环境:处理器为2.2GHz Intel Core i7,内存为16 GB 1600 MHz DDR3SSD硬盘,使用默认的JVM参数,运行在64位的OS X 10.10.1上。

小结

(1) 扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容

(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。

(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap

(4) JDK1.8引入红黑树大程度优化了HashMap的性能。

(5) 还没升级JDK1.8的,现在开始升级吧。HashMap的性能提升仅仅是JDK1.8的冰山一角。

参考

1.       JDK1.7&JDK1.8 源码。

2.       CSDN博客频道,HashMap多线程死循环问题2014

3.       红黑联盟,Java类集框架之HashMap(JDK1.8)源码剖析2015

4.       CSDN博客频道, 教你初步了解红黑树2010

5.       Java Code GeeksHashMapperformance improvements in Java 82014

6.       Importnew危险!在HashMap中将可变对象用作Key2014

7.       CSDN博客频道,为什么一般hashtable的桶数会取一个素数2013

 

HashMap的get方法实现JDK1.8

public V get(Object key) {

        Node e;

        return (e = getNode(hash(key), key)) == null ? null : e.value;

}

 

/**

     * Implements Map.get and related methods

     *

     * @param hash hash for key

     * @param key the key

     * @return the node, or null if none

     */

    final Node getNode(inthash, Object key) {

        Node[] tab; Node first, e; intn; K k;

        if ((tab = table) != null && (n = tab.length) > 0 &&

            (first = tab[(n - 1) & hash]) != null) {

            if (first.hash == hash && // always check first node

                ((k = first.key) == key || (key != null && key.equals(k))))

                returnfirst;

            if ((e = first.next) != null) {

                if (firstinstanceof TreeNode)

                    return ((TreeNode)first).getTreeNode(hash, key);

                do {

                    if (e.hash == hash &&

                        ((k = e.key) == key || (key != null && key.equals(k))))

                        returne;

                } while ((e = e.next) != null);

            }

        }

        returnnull;

    }

 

 

HashMap的get方法实现JDK1.7

思路如下:

1.    bucket里的第一个节点,直接命中;

2.    如果有冲突,则通过key.equals(k)去查找对应的entry 
若为树,则在树中通过key.equals(k)查找,O(logn) 
若为链表,则在链表中通过key.equals(k)查找,O(n)

public V get(Object key) {

       Node e;

        return (e =getNode(hash(key), key)) == null ? null : e.value;

    }

 

final Node getNode(int hash, Object key) {

       Node[] tab; Node first, e; int n; K k;

        if ((tab = table) != null && (n =tab.length) > 0 &&

            (first= tab[(n - 1) & hash]) != null) {

            // 直接命中

            if (first.hash == hash&& // 每次都是校验第一个node

                ((k= first.key) == key || (key != null &&key.equals(k))))

                return first;

           // 未命中

            if ((e = first.next) != null) {

            // 在树中获取

                if (first instanceof TreeNode)

                   return ((TreeNode)first).getTreeNode(hash,key);

                // 在链表中获取

                do{

                   if (e.hash == hash &&

                       ((k = e.key) == key || (key != null &&key.equals(k))))

                       return e;

                } while ((e = e.next) != null);

            }

        }

        returnnull;

    }

 

Fail-Fast机制

java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略

这一策略在源码中的实现是通过modCount域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器expectedModCount

//JDK1.8

abstractclass HashIterator {

        Node next;        // next entry to return

        Node current;     // current entry

        intexpectedModCount// for fast-fail

        intindex;             // current slot

 

        HashIterator() {

            expectedModCount = modCount;

            Node[] t = table;

            current = next = null;

            index = 0;

            if (t != null && size > 0) { // advance to first entry

                do {} while (index < t.length && (next = t[index++]) == null);

            }

        }

 

        publicfinalboolean hasNext() {

            returnnext != null;

        }

 

        final Node nextNode() {

            Node[] t;

            Node e = next;

            if (modCount != expectedModCount)

                thrownew ConcurrentModificationException();

            if (e == null)

                thrownew NoSuchElementException();

            if ((next = (current = e).next) == null && (t = table) != null) {

                do {} while (index < t.length && (next = t[index++]) == null);

            }

            returne;

        }

 

        publicfinalvoid remove() {

            Node p = current;

            if (p == null)

                thrownew IllegalStateException();

            if (modCount != expectedModCount)

                thrownew ConcurrentModificationException();

            current = null;

            K key = p.key;

            removeNode(hash(key), key, null, false, false);

            expectedModCount = modCount;

        }

    }

在迭代过程中,判断modCountexpectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map:

注意到modCount声明为volatile,保证线程之间修改的可见性。

transientintmodCount;//JDK1.8

transientvolatileintmodCount; //JDK1.7

在HashMap的API中指出:

由所有HashMap类的“collection 视图方法”所返回的迭代器都是快速失败的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。

注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

 

 

 

 

 

 

 

 

你可能感兴趣的:(JAVA)