# -*- coding: utf-8 -*-
'''
Created on 2017年12月21日
@author: Jason.F
@summary: 自适应线性神经网络学习算法
'''
import numpy as np
import time
import matplotlib.pyplot as plt
import pandas as pd
class AdalineGD(object):
'''
Adaptive Linear Neuron classifier.
hyper-Parameters
eta:float=Learning rate (between 0.0 and 1.0)
n_iter:int=Passes over the training dataset.
Attributes
w_:ld-array=weights after fitting.
costs_:list=Number of misclassification in every epoch.
'''
def __init__(self,eta=0.01,n_iter=50):
self.eta=eta
self.n_iter=n_iter
def fit(self,X,y):
'''
Fit training data.
Parameters
X:{array-like},shape=[n_samples,n_features]=Training vectors,where n_samples is the number of samples and n_features is the number of features.
y:array-like,shape=[n_samples]=Target values.
Returns
self:object
'''
self.w_=np.zeros(1+X.shape[1])
self.costs_=[]
for i in range(self.n_iter):
output=self.net_input(X)
errors=(y-output)
self.w_[1:] += self.eta * X.T.dot(errors)
self.w_[0] += self.eta * errors.sum()
cost=(errors ** 2).sum() /2.0
self.costs_.append(cost)
return self
def net_input(self,X):
#calculate net input
return np.dot(X,self.w_[1:])+self.w_[0]
def activation(self,X):
#computer linear activation
return self.net_input(X)
def predict(self,X):
#return class label after unit step
return np.where(self.activation(X)>=0.0,1,-1)
if __name__ == "__main__":
start = time.clock()
#训练数据
train =pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
X_train = train.drop([4], axis=1).values #dataframe convert to array
y_train = train[4].values
#特征值标准化,特征缩放方法,使数据具有标准正态分布的特性,各特征的均值为0,标准差为1.
X_std=np.copy(X_train)
X_std[:,0]=(X_train[:,0]-X_train[:,0].mean()) / X_train[:,0].std()
X_std[:,1]=(X_train[:,1]-X_train[:,1].mean()) / X_train[:,1].std()
#X_std[:,2]=(X_train[:,2]-X_train[:,2].mean()) / X_train[:,2].std()
#X_std[:,3]=(X_train[:,3]-X_train[:,3].mean()) / X_train[:,3].std()
y=np.where(y_train == 'Iris-setosa',-1,1)#one vs rest:OvR
#学习速率和迭代次数者两个超参进行观察
fig,ax=plt.subplots(nrows=1,ncols=2,figsize=(8,4))
#eta=0.01,n_iter=20
agd1 = AdalineGD(eta=0.01,n_iter=20).fit(X_std,y)
print (agd1.predict([6.9,3.0,5.1,1.8]))#预测
ax[0].plot(range(1,len(agd1.costs_)+1),np.log10(agd1.costs_),marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-Squared-error)')
ax[0].set_title('Adaline-learning rate 0.01')
#eta=0.0001,n_iter=20
agd2 = AdalineGD(eta=0.0001,n_iter=20).fit(X_std,y)
print (agd2.predict([6.9,3.0,5.1,1.8]))#预测
ax[1].plot(range(1,len(agd2.costs_)+1),np.log10(agd2.costs_),marker='x')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('log(Sum-Squared-error)')
ax[1].set_title('Adaline-learning rate 0.0001')
#show
plt.show()
end = time.clock()
print('finish all in %s' % str(end - start))
# -*- coding: utf-8 -*-
'''
Created on 2017年12月21日
@author: Jason.F
@summary: 自适应线性神经网络学习算法
'''
import numpy as np
import time
import matplotlib.pyplot as plt
import pandas as pd
from numpy.random import seed
class AdalineSGD(object):
'''
Adaptive Linear Neuron classifier.
hyper-Parameters
eta:float=Learning rate (between 0.0 and 1.0)
n_iter:int=Passes over the training dataset.
Attributes
w_:ld-array=weights after fitting.
costs_:list=Number of misclassification in every epoch.
shuffle:bool(default:True)=Shuffles training data every epoch if True to prevent cycles.
random_state:int(default:None)=set random state for shuffling and initializing the weights.
'''
def __init__(self,eta=0.01,n_iter=20,shuffle=True,random_state=None):
self.eta=eta
self.n_iter=n_iter
self.w_initialized=False
self.shuffle=shuffle
if random_state:
seed(random_state)
def fit(self,X,y):
'''
Fit training data.
Parameters
X:{array-like},shape=[n_samples,n_features]=Training vectors,where n_samples is the number of samples and n_features is the number of features.
y:array-like,shape=[n_samples]=Target values.
Returns
self:object
'''
self._initialize_weights(X.shape[1])
self.cost_=[]
for i in range(self.n_iter):
if self.shuffle:
X,y=self._shuffle(X,y)
cost=[]
for xi,target in zip(X,y):
cost.append(self._update_weights(xi,target))
avg_cost=sum(cost)/len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self,X,y):
#Fit training data without reinitializing the weights
if not self.w_initialized:
self._initialize_weights(X.shape[1])
if y.ravel().shape[0]>1:
for xi,target in zip(X,y):
self._update_weights(xi,target)
else:
self._update_weights(X,y)
return self
def _shuffle(self,X,y):
#shuffle training data
r=np.random.permutation(len(y))
return X[r],y[r]
def _initialize_weights(self,m):
#Initialize weights to zeros
self.w_ =np.zeros(1+m)
self.w_initialized=True
def _update_weights(self,xi,target):
#apply adaline learning rule to update the weights
output=self.net_input(xi)
error=(target-output)
self.w_[1:] += self.eta * xi.dot(error)
self.w_[0] += self.eta * error
cost= 0.5 * error ** 2
return cost
def net_input(self,X):
#calculate net input
return np.dot(X,self.w_[1:])+self.w_[0]
def activation(self,X):
#computer linear activation
return self.net_input(X)
def predict(self,X):
#return class label after unit step
return np.where(self.activation(X)>=0.0,1,-1)
if __name__ == "__main__":
start = time.clock()
#训练数据
train =pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None)
X_train = train.drop([4], axis=1).values #dataframe convert to array
y_train = train[4].values
#特征值标准化,特征缩放方法,使数据具有标准正态分布的特性,各特征的均值为0,标准差为1.
X_std=np.copy(X_train)
X_std[:,0]=(X_train[:,0]-X_train[:,0].mean()) / X_train[:,0].std()
X_std[:,1]=(X_train[:,1]-X_train[:,1].mean()) / X_train[:,1].std()
#X_std[:,2]=(X_train[:,2]-X_train[:,2].mean()) / X_train[:,2].std()
#X_std[:,3]=(X_train[:,3]-X_train[:,3].mean()) / X_train[:,3].std()
y=np.where(y_train == 'Iris-setosa',-1,1)#one vs rest:OvR
#学习速率和迭代次数者两个超参进行观察
fig,ax=plt.subplots(nrows=1,ncols=2,figsize=(8,4))
#eta=0.01,n_iter=20
agd1 = AdalineSGD(eta=0.01,n_iter=20,random_state=1).fit(X_std,y)
print (agd1.predict([6.9,3.0,5.1,1.8]))#预测
ax[0].plot(range(1,len(agd1.cost_)+1),agd1.cost_,marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Average Cost')
ax[0].set_title('Adaline-learning rate 0.01')
#eta=0.0001,n_iter=20
agd2 = AdalineSGD(eta=0.0001,n_iter=20,random_state=1).fit(X_std,y)
print (agd2.predict([6.9,3.0,5.1,1.8]))#预测
ax[1].plot(range(1,len(agd2.cost_)+1),agd2.cost_,marker='x')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Average Cost')
ax[1].set_title('Adaline-learning rate 0.0001')
#show
plt.show()
#测试在线更新
print (agd2.w_) #更新前
agd2.partial_fit(X_std[0,:],y[0])
print (agd2.w_) #更新后
end = time.clock()
print('finish all in %s' % str(end - start))
下图是对特征值不做标准化的,可以比对效果: