在进行代码实现时,下面的代码无法再python3.x中运行:
reduce(lambda a, b: a + b,
map(lambda (x, w): x * w,
zip(input_vec, self.weights))
, 0.0) + self.bias
将上述代码修改为:
reduce(lambda a, b: a + b,
[x * w for x, w in zip(input_vec, self.weights)],
0.0) + self.bias
完整代码:
from functools import reduce
class Perseptron(object):
def __init__(self, input_num, activator):
'''
初始化感知器,设置输输入参数的个数以及激活函数
:param input_num:
:param activator:
'''
self.activator = activator
# 权重向量初始化为0
self.weights = [0.0 for _ in range(input_num)]
# 初始化偏置项为0
self.bias = 0
def __str__(self):
'''
打印学习到的权重、偏置项
:return:
'''
return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
def predict(self, input_vec):
'''
输入向量,输出感知器的计算结果
:param input_vec:
:return:
'''
# 把input_vec[x1, x2,x3...]和weights[w1, w2, w3..]打包在一起
# 变成[(x1, w1), (x2, w2), (x3, w3),..]
# 然后利用map函数计算[x1*w1, x2*w2, x3* w3]
# 最后利用reduce求和
return self.activator(
reduce(lambda a, b: a + b,
[x * w for x, w in zip(input_vec, self.weights)],
0.0) + self.bias)
def train(self, input_vecs, labels, iteration, rate):
'''
输入训练数据:一组向量、与每个向量对应的label,以及训练轮数、学习率
:param input_vec:
:param labels:
:param iteration:
:param rate:
:return:
'''
for i in range(iteration):
self._one_iteration(input_vecs, labels, rate)
def _one_iteration(self, input_vecs, labels, rate):
'''
一次迭代, 把所有的训练数据过一遍
:param input_vecs:
:param labels:
:param rate:
:return:
'''
# 把输入和输出打包在一起,成为样本的列表[(input_vec, label),..]
# 每个训练样本是(input_vec, label)
samples = zip(input_vecs, labels)
# 对每个样本,按照感知器规则更新权重
for (input_vec, label) in samples:
# 计算服务器在当前权重下的输出
output = self.predict(input_vec)
# 更新权重
self._update_weights(input_vec, output, label, rate)
def _update_weights(self, input_vec, output, label, rate):
'''
按照感知器啊规则更新权重
:param input_vec:
:param output:
:param label:
:param rate:
:return:
'''
# 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用感知器规则更新权重
delta = label - output
self.weights = [ w + rate * delta * x
for x, w in zip(input_vec, self.weights)]
# 更新权重
self.bias += rate * delta
def f(x):
'''
定义激活函数f
:param x:
:return:
'''
return 1 if x > 0 else 0
def get_training_dataset():
'''
基于and真值表构建训练数据
:return:
'''
# 构建训练数据
input_vecs = [[1, 1], [0, 0], [1, 0], [0, 1]]
# 期望的输出列表,注意要与输入一一对应
# [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
labels = [1, 0, 0, 0]
return input_vecs, labels
def train_and_perceptron():
'''
使用and真值表训练感知器
:return:
'''
# 构建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
p = Perseptron(2, f)
# 训练,迭代10轮,学习速率为0.1
input_vecs, labels = get_training_dataset()
p.train(input_vecs, labels, 10, 0.1)
# 返回训练好的感知器
return p
if __name__ == '__main__':
# 训练and感知器
and_perceptron = train_and_perceptron()
# 打印训练获得的权值
print(and_perceptron)
# 测试
print(
'1 and 1 = %d' % and_perceptron.predict([1, 1]))
print(
'0 and 0 = %d' % and_perceptron.predict([0, 0]))
print(
'1 and 0 = %d' % and_perceptron.predict([1, 0]))
print(
'0 and 1 = %d' % and_perceptron.predict([0, 1]))
运行结果:
weights :[0.1, 0.2]
bias :-0.200000
1 and 1 = 1
0 and 0 = 0
1 and 0 = 0
0 and 1 = 0