卷积核一定可以提升网络性能吗?-分类0,2

制作一个网络然后向这个网络上加1-9个卷积核,通过网络的分辨准确率来比较卷积核对网络性能的影响。

网络的结构是

(mnist 0 ,mnist2)81-con(3*3)*n-(49*n)-30-2-(1,0) || (0,1)

分类mnist的0和2,将28*28的图片压缩到9*9,向这个网络增加n个3*3的卷积核,网络隐藏层的节点数是30个,让0向(1,0)收敛,让2向(0,1)收敛。让n分别等于0-9.当n=0时,网络相当于一个三层的网络

(mnist 0 ,mnist2)81-30-2-(1,0) || (0,1)

用这个没有卷积核的3层网络作为参照比较网络性能的变化。

网络迭代的停止标准是:

|网络的输出值-目标函数|<δ,

让δ分别等于0.5到1e-6的34个值每个δ收敛199次,通过每次收敛的准确率的平均值和199次收敛的最大值来比较性能的变化。一共收敛了9*34*199次。

平均性能的表格

   

1

2

3

4

5

6

7

8

9

δ

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

平均准确率p-ave

0.5

0.5523392

0.5039786

0.502023

0.5121532

0.5091611

0.5093609

0.5166738

0.5169935

0.5132447

0.5188143

0.4

0.9516094

0.7559143

0.7354191

0.7508267

0.6995165

0.6534412

0.6503317

0.6558139

0.6173537

0.649505

0.3

0.9548188

0.8792771

0.8562769

0.8324675

0.8165954

0.7935727

0.7344676

0.7343227

0.7617811

0.7652077

0.2

0.9455553

0.9126847

0.8743069

0.8599209

0.8596436

0.8487367

0.8041924

0.7903484

0.7557494

0.7660594

0.1

0.9601137

0.9143681

0.8736151

0.8528228

0.8806283

0.8796717

0.8396106

0.7770588

0.7376894

0.6889642

0.01

0.9393064

0.9245307

0.8586921

0.7835649

0.7043043

0.7821613

0.8381045

0.8263509

0.8017723

0.7628475

0.001

0.9764878

0.9358697

0.9156918

0.7677628

0.677308

0.6918139

0.6827552

0.6992168

0.6397644

0.6579093

9.00E-04

0.976268

0.9418714

0.9082715

0.7771262

0.6896435

0.6739163

0.6619629

0.6649675

0.6600498

0.6836219

8.00E-04

0.9763554

0.9388343

0.9299529

0.7895916

0.6767286

0.6480064

0.6607965

0.6492677

0.6606017

0.686042

7.00E-04

0.9764379

0.937663

0.9266137

0.8038253

0.7073439

0.6674051

0.6691085

0.6738489

0.6938295

0.748409

6.00E-04

0.9775193

0.9359047

0.9417115

0.842268

0.7357039

0.6842812

0.6739413

0.686047

0.7140099

0.772683

5.00E-04

0.9785883

0.9323032

0.9336768

0.8814125

0.7663092

0.7402345

0.7195346

0.761384

0.795848

0.8459095

4.00E-04

0.9786957

0.9397759

0.9376979

0.9120353

0.8389612

0.8006309

0.7972392

0.8230716

0.8615768

0.8792496

3.00E-04

0.9787057

0.9376355

0.9369512

0.9286942

0.8930937

0.8779609

0.8737425

0.9023822

0.9043228

0.9192658

2.00E-04

0.9807637

0.9394288

0.9160514

0.9294584

0.9271831

0.9271157

0.9328826

0.9386095

0.9462971

0.9588349

1.00E-04

0.980931

0.9435847

0.9207244

0.9284419

0.9477307

0.9556655

0.9600662

0.9628136

0.9671569

0.970661

9.00E-05

0.980409

0.9463745

0.9198777

0.9400207

0.949439

0.9538298

0.9648616

0.961882

0.9693647

0.9697219

8.00E-05

0.9805963

0.9482127

0.9346559

0.9425932

0.9509601

0.9606856

0.9629584

0.9673242

0.968031

0.9698842

7.00E-05

0.9805189

0.9511449

0.9402679

0.9501708

0.957721

0.9614924

0.9692398

0.9690101

0.9715276

0.9699816

6.00E-05

0.9813631

0.9534327

0.9404153

0.9503007

0.962876

0.9671019

0.9707534

0.9715576

0.9721071

0.9730986

5.00E-05

0.9820649

0.9538448

0.9515645

0.9591546

0.9651638

0.9709657

0.9717874

0.973698

0.9731785

0.9733808

4.00E-05

0.9827467

0.953645

0.9557554

0.9651563

0.9691499

0.9737555

0.9740926

0.9746471

0.9739852

0.975219

3.00E-05

0.9830564

0.9588249

0.964387

0.9707584

0.9724492

0.9763055

0.9759883

0.9759009

0.9736655

0.9752915

2.00E-05

0.983526

0.9624015

0.9721995

0.9748769

0.975776

0.9766801

0.9769274

0.9769873

0.9756062

0.9740602

1.00E-05

0.9821723

0.9718698

0.9794749

0.977799

0.9770598

0.9779814

0.9764878

0.9773944

0.9761531

0.974707

9.00E-06

0.9822897

0.9740377

0.9801942

0.9780488

0.9786107

0.9772221

0.9770198

0.9759833

0.9749343

0.9747445

8.00E-06

0.9825819

0.9755562

0.978888

0.9779913

0.9770023

0.9771671

0.9770847

0.9765203

0.9760507

0.9765053

7.00E-06

0.9826743

0.9759308

0.9779514

0.9788755

0.9774069

0.9771871

0.9777766

0.9768724

0.977859

0.9755887

6.00E-06

0.9826368

0.9772346

0.9790528

0.9789454

0.9779214

0.9770747

0.9771497

0.9769199

0.9764478

0.9761681

5.00E-06

0.9826618

0.9778415

0.9786532

0.9784184

0.9771247

0.978346

0.9778215

0.9772096

0.9766701

0.9759308

4.00E-06

0.9829016

0.9796822

0.9805738

0.9779464

0.9781812

0.9785108

0.9785833

0.9789554

0.9774369

0.9764828

3.00E-06

0.9834086

0.9801243

0.9796522

0.9786957

0.9785083

0.9790953

0.979405

0.9794799

0.9787356

0.9779764

2.00E-06

0.9839805

0.9801667

0.9800768

0.9799894

0.9800469

0.9802292

0.9806188

0.9806488

0.9797047

0.9782211

1.00E-06

0.9850945

0.9819625

0.9821623

0.9810084

0.9816928

0.9825095

0.98199

0.9821398

0.9816953

0.9817527

卷积核一定可以提升网络性能吗?-分类0,2_第1张图片

没有加卷积核的3层网络的平均准确率大于任何加卷积核的网络,也就是增加卷积核对这个网络的平均性能没有任何正面价值。平均性能随卷积核变化的一个大致的规律,有2个卷积核的网络的平均性能最大,当卷积核数量超过2个以后随着卷积核数量的增加网络的平均性能有明显的下降趋势。

按照平均性能排序如下

81*30*2>2>3>4>5>6>7>8>9>1

 

再比较网络的最大性能的变化

   

1

2

3

4

5

6

7

8

9

δ

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

最大值p-max

0.5

0.9284294

0.8489066

0.7897614

0.7659046

0.7997018

0.888171

0.8533797

0.833499

0.8136183

0.8210736

0.4

0.9671968

0.97167

0.9771372

0.972664

0.972664

0.9741551

0.9741551

0.9741551

0.9761431

0.9736581

0.3

0.9686879

0.971173

0.972664

0.972167

0.9681909

0.973161

0.97167

0.9686879

0.973161

0.973161

0.2

0.9627237

0.9756461

0.971173

0.9741551

0.9736581

0.9746521

0.9736581

0.972664

0.9736581

0.97167

0.1

0.9706759

0.9691849

0.9786282

0.97167

0.9761431

0.9766402

0.9756461

0.9756461

0.9681909

0.9671968

0.01

0.9776342

0.9751491

0.9761431

0.9776342

0.9761431

0.9706759

0.972167

0.9756461

0.9736581

0.972167

0.001

0.9816103

0.9796223

0.9801193

0.9741551

0.9776342

0.9786282

0.9791252

0.9826044

0.9806163

0.9801193

9.00E-04

0.9806163

0.9786282

0.9791252

0.9751491

0.9771372

0.9781312

0.9811133

0.9806163

0.9806163

0.9791252

8.00E-04

0.9816103

0.9796223

0.9811133

0.9791252

0.9746521

0.9801193

0.9786282

0.9806163

0.9806163

0.9816103

7.00E-04

0.9816103

0.9811133

0.9786282

0.9781312

0.9796223

0.9771372

0.9781312

0.9796223

0.9801193

0.9831014

6.00E-04

0.9816103

0.9791252

0.9806163

0.9796223

0.9771372

0.9781312

0.972167

0.9791252

0.9806163

0.9801193

5.00E-04

0.9816103

0.9791252

0.9811133

0.9811133

0.9811133

0.9796223

0.9776342

0.9816103

0.9831014

0.9845924

4.00E-04

0.9831014

0.9811133

0.9791252

0.9801193

0.9796223

0.9811133

0.9791252

0.9816103

0.9826044

0.9840954

3.00E-04

0.9835984

0.9786282

0.9826044

0.9811133

0.9806163

0.9835984

0.9831014

0.9821074

0.9840954

0.9845924

2.00E-04

0.9831014

0.9845924

0.9840954

0.9811133

0.9831014

0.9855865

0.9850895

0.9850895

0.9865805

0.9860835

1.00E-04

0.9831014

0.9835984

0.9835984

0.9840954

0.9845924

0.9865805

0.9860835

0.9875746

0.9875746

0.9880716

9.00E-05

0.9845924

0.9816103

0.9826044

0.9860835

0.9860835

0.9860835

0.9870775

0.9875746

0.9865805

0.9875746

8.00E-05

0.9845924

0.9835984

0.9845924

0.9855865

0.9865805

0.9870775

0.9870775

0.9875746

0.9860835

0.9865805

7.00E-05

0.9845924

0.9821074

0.9831014

0.9855865

0.9865805

0.9875746

0.9875746

0.9870775

0.9870775

0.9875746

6.00E-05

0.9845924

0.9835984

0.9845924

0.9855865

0.9870775

0.9865805

0.9875746

0.9880716

0.9865805

0.9875746

5.00E-05

0.9850895

0.9826044

0.9855865

0.9865805

0.9880716

0.9875746

0.9895626

0.9875746

0.9875746

0.9870775

4.00E-05

0.9850895

0.9826044

0.9855865

0.9875746

0.9885686

0.9875746

0.9880716

0.9890656

0.9875746

0.9875746

3.00E-05

0.9855865

0.9885686

0.9880716

0.9875746

0.9880716

0.9880716

0.9880716

0.9885686

0.9880716

0.9880716

2.00E-05

0.9855865

0.9880716

0.9875746

0.9875746

0.9900596

0.9875746

0.9875746

0.9890656

0.9890656

0.9885686

1.00E-05

0.9855865

0.9875746

0.9880716

0.9895626

0.9875746

0.9885686

0.9885686

0.9895626

0.9890656

0.9885686

9.00E-06

0.9850895

0.9870775

0.9885686

0.9880716

0.9885686

0.9890656

0.9885686

0.9885686

0.9895626

0.9885686

8.00E-06

0.9850895

0.9865805

0.9875746

0.9885686

0.9895626

0.9885686

0.9885686

0.9885686

0.9890656

0.9890656

7.00E-06

0.9845924

0.9875746

0.9885686

0.9880716

0.9885686

0.9880716

0.9885686

0.9880716

0.9880716

0.9885686

6.00E-06

0.9845924

0.9880716

0.9885686

0.9885686

0.9880716

0.9880716

0.9885686

0.9885686

0.9885686

0.9900596

5.00E-06

0.9845924

0.9875746

0.9880716

0.9895626

0.9890656

0.9880716

0.9900596

0.9890656

0.9885686

0.9885686

4.00E-06

0.9845924

0.9880716

0.9885686

0.9890656

0.9890656

0.9880716

0.9895626

0.9895626

0.9885686

0.9885686

3.00E-06

0.9855865

0.9875746

0.9880716

0.9890656

0.9880716

0.9885686

0.9895626

0.9880716

0.9890656

0.9900596

2.00E-06

0.9870775

0.9875746

0.9885686

0.9890656

0.9885686

0.9890656

0.9885686

0.9895626

0.9875746

0.9890656

1.00E-06

0.9875746

0.9890656

0.9900596

0.9905567

0.9895626

0.9915507

0.9885686

0.9895626

0.9895626

0.9890656

卷积核一定可以提升网络性能吗?-分类0,2_第2张图片

虽然增加卷积核对网路的平均性能没有正面价值,但有卷积核网络的最大性能都好于原始的3层网络,表明卷积核对网络的最大性能有显著提升。

卷积核一定可以提升网络性能吗?-分类0,2_第3张图片

 

用收敛标准=1e-6的值排序

5>3>2>4=7=8>1=9>6>81*30*2

 

加上前面做的0-1,0-5,0-6的实验已经做了4组,将所有的数据总结成表格

平均性能 0-1 81*30*2>2>3>4>5>6>7>8>9>1 没有正面价值
  0-5 2>3>4>5>6>7>8>9>81-30-2>1 明显提升
  0-6 81*30*2>2>9>8>1>7>6>5>4>3 没有正面价值
  0-2 81*30*2>2>3>4>5>6>7>8>9>1 没有正面价值
           
最大性能 0-1 81*30*2=1=2=3=4=5=6=7=8=9 没有提升
  0-5 2>3>4>5>6>7>8>9>1>81-30-2 提升明显
  0-6 81*30*2=2=7>8>1=3=4>6>5 无明显提升
  0-2 5>3>2>4=7=8>1=9>6>81*30*2 提升明显


对网络平均性能有提升的只有0-5,对网络最大性能有明显提升的只有0-5和0-2.而对于0-1和0-6.增加卷积核对网络的平均性能和最大性能都没有任何正面价值。表明卷积核对网络性能的影响不是绝对的,与测试集有很大的关系。并不是所有的测试集都适于加卷积核。

比较迭代次数

   

1

2

3

4

5

6

7

8

9

δ

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

迭代次数n

0.5

8.8643216

16.246231

13.809045

14.904523

15.175879

12.135678

11.834171

11.924623

13.065327

11.130653

0.4

208.9397

1685.9246

1134.1307

882.45729

751.93467

664.0804

594.83417

526.31658

481.18593

445.8191

0.3

268.72864

1923.0955

1299.8291

1047.608

869.26633

788.86935

699.34171

648.02513

593.94472

548.1809

0.2

324.01508

2120.0452

1440.6281

1160.9749

988.66332

872.42714

790.13568

712.67839

664.07538

630.42211

0.1

410.58794

2318.6683

1637.1307

1291.804

1105.392

971.68342

880.61307

814.58794

764.27136

718.45729

0.01

685.54774

2832.7236

2076.397

1656.4171

1424.8995

1282.6281

1206.7035

1101.2513

1039.4724

999.18593

0.001

1447.1307

3803.3216

2899.7387

2436.8945

2234.598

2142.9648

2086.7085

2070.9849

2123.7638

2199.7889

9.00E-04

1450.9146

3783.5276

2924.2462

2495.8342

2291.7538

2173.5628

2137.2211

2139.3467

2256.804

2365.5226

8.00E-04

1494.9246

3831.3266

3005.1759

2545.6231

2314.8342

2233.1558

2231.5327

2247.4975

2312.9698

2508.6784

7.00E-04

1552.7136

3962.8894

3032.8241

2621.9497

2432.1558

2312.2362

2360.9447

2437.2261

2532.6633

3025.8291

6.00E-04

1711.6281

4070.799

3151.9698

2738.2462

2520.1809

2427.5578

2559.2161

2598.5427

2897.8191

3426.1709

5.00E-04

1968.7136

4228.1005

3268.7487

2908.4422

2656.392

2614.2312

2638.9397

3189.1759

3705.1457

4812.1407

4.00E-04

2165.0553

4379.6533

3413.5879

3049.1709

2878.2161

2938.7839

3379.3819

4073.3719

5242.4171

7248.4221

3.00E-04

2324.0804

4616.3869

3568.7487

3236.6734

3262.6985

3474.1357

4279.6533

6453.8191

8586.4523

11609.673

2.00E-04

2720.8442

5050.8744

4034.0854

3941.7839

4741.608

5935.9347

8696.7739

11151.116

15180.141

19449.472

1.00E-04

3165.7085

6349.6985

5698.9447

6692.2211

9883.7035

14487.849

20128.899

26472.593

31021.317

34488.161

9.00E-05

3407.9095

6705.2513

6425.6432

7671.8342

10057.864

16786.427

22643.764

27280.819

33107.07

36141.161

8.00E-05

3486.7638

6955.8141

6875.5779

8632.7638

13695.608

18656.789

24313.794

30661.899

32898.834

37901.487

7.00E-05

3668.6834

7528.9196

7582.6533

10520.673

14594.503

21585.935

27430.905

33478.191

37926.065

39971.744

6.00E-05

3962.5628

8184.2915

8908.6583

10364.412

17772.01

26005.452

33621.568

37461.166

40297.015

43397.05

5.00E-05

4167.6784

8865.0201

9484.1759

13928.859

20620.387

29064.899

36309.246

40110.719

43048.417

45538.367

4.00E-05

4515.8291

9644.5578

11563.161

18354.367

27010.352

33951.97

40799.658

44108.271

45917.915

48308.945

3.00E-05

5059.8794

11485.899

15935.819

23537.467

31983.07

40540.769

44894.171

48028.648

49944.307

52696.226

2.00E-05

6524.8744

15515.141

23050.367

31693.899

39692.101

46629.558

50373.94

54465.653

55854.437

57249.005

1.00E-05

8527.8995

25127.07

34262.568

43816.402

51902.055

55930.221

60159.965

61394.462

63830.06

66139.307

9.00E-06

8746.4221

26410.513

37680.035

46022.296

54010.824

57544.231

61327.05

63699.201

64750.774

68351

8.00E-06

9474.0101

29507.945

39589.829

48614.332

54025.236

59733.015

62842.513

64384.889

66818.925

68970.196

7.00E-06

10301.668

31298.121

40019.106

50429.01

56361.678

62009

63321.663

66217.427

69258.372

69606.422

6.00E-06

11850.653

33845.357

44199.276

51939.93

59028.905

63013.839

65983.749

67526.186

69809.583

70851.06

5.00E-06

13068.734

36965.256

47009.317

56133.382

62123.925

66072.719

68282.146

71326.035

72951.161

74612.08

4.00E-06

14670.05

40347.784

49610.824

59106.07

63852.477

69004.804

71463.156

73956.101

77287.442

76819.804

3.00E-06

17112.472

44845.005

56031.894

62566.347

67823.025

73042.563

74778.497

77379.653

80787.312

81893.528

2.00E-06

23285.869

52058.754

62225.432

70379.01

74180.412

77512.573

81224.447

85341.327

87238.95

87805.156

1.00E-06

35222.241

66830.714

77563.397

82040.663

86059.04

90214.985

93471.638

96062.583

99403.251

102968.42

 

迭代次数随着卷积核数量的增加而增加,在《计算多卷积核神经网络迭代次数》中已经得到的卷积核的数量与迭代次数的公式

卷积核一定可以提升网络性能吗?-分类0,2_第4张图片

 

ni/n(i-1)

 

b

1.1605951

1.057724

1.0489803

1.0482918

1.0360988

1.027719

1.034776

1.0358657

(i/(i-1))**0.5

a

1.4142136

1.2247449

1.1547005

1.118034

1.0954451

1.0801234

1.069045

1.0606602

                     

a/b

α

 

1.2185245

1.157906

1.1007838

1.0665294

1.0572786

1.050991

1.0331173

1.023936

 

X

 

2

3

4

5

6

7

8

9

 

α和x拟合方程

α=1.3075677654798437*x**-0.11553016292685217

0.9715966417109875   ******  决定系数 r**2

计算迭代次数

 

2

3

4

5

6

7

8

9

α

1.2069413

1.1517078

1.1140588

1.0857056

1.0630759

1.0443111

1.0283242

1.0144261

∏α

 

1.1517078

1.2830702

1.3930366

1.4809036

1.546524

1.5903281

1.6132704

                 

计算

 

82482.182

85491.196

88036.813

90717.416

93828.37

97543.891

101989.61

实测

 

82040.663

86059.04

90214.985

93471.638

96062.583

99403.251

102968.42

误差

 

0.0053817

0.0065983

0.0241442

0.0294659

0.0232579

0.0187052

0.0095059

 

比较耗时

   

1

2

3

4

5

6

7

8

9

δ

耗时 min/199

耗时 min/199

耗时 min/199

耗时 min/199

耗时 min/199

耗时 min/199

耗时 min/199

耗时 min/199

耗时 min/199

耗时 min/199

0.5

0.06415

0.1054333

0.1807833

0.2866167

0.3691167

0.4632

0.6012167

0.68235

0.7749

0.8857667

0.4

0.0743

0.4034333

0.5565167

0.74555

0.8677

1.0177333

1.2258

1.317

1.4365333

1.5769833

0.3

0.0762833

0.4464333

0.6118

0.8334833

0.9509833

1.1233167

1.3131

1.4768

1.5941

1.7541667

0.2

0.08025

0.4785167

0.66015

0.88305

1.0305833

1.1935333

1.3994

1.49935

1.6984167

1.8722667

0.1

0.0854667

0.5151333

0.7269333

0.9404167

1.1488

1.2794167

1.4967

0.6726667

1.81285

2.0303667

0.01

0.10295

0.6091

0.8742833

1.1268833

1.3877833

1.5445667

1.87975

1.98915

2.1972667

2.4928833

0.001

0.1482167

0.7868167

1.1538

1.5269333

1.9254333

2.2772667

2.8063167

3.1866833

3.7478167

4.4037333

9.00E-04

0.1486833

0.7794833

1.16055

1.5606167

1.969

2.3014333

2.8294333

3.2884667

3.9535667

1.89435

8.00E-04

0.1523833

0.7895

1.1887833

1.58825

1.9530167

2.3543833

2.89775

3.4075167

3.9764333

4.8350333

7.00E-04

0.15595

0.8114

1.1984167

1.62435

2.0165333

2.4227167

3.0292167

3.6387333

4.3147167

5.7025833

6.00E-04

0.1680833

0.8324333

1.2386

1.6883667

2.0880667

2.5167

3.18455

3.8301

4.8615833

6.2168833

5.00E-04

0.1823667

0.8596

1.2762667

1.7719167

2.1733333

2.6760833

3.2791167

4.5327833

6.0158667

8.5344833

4.00E-04

0.1947833

0.8926833

1.3244833

1.8532833

0.6664

2.9511333

4.0198333

5.58965

8.1587833

12.120433

3.00E-04

0.2015833

0.9296333

1.3770167

1.9949667

2.5713

3.3963333

4.93535

8.5260333

12.716067

18.7017

2.00E-04

0.2242667

1.07535

1.5356333

2.4373833

3.6019667

5.4545

7.9383167

14.16995

21.765317

29.262633

1.00E-04

0.2510167

1.3040167

2.0991

3.9648333

7.1169

12.690533

20.795567

31.041767

43.3882

54.798383

9.00E-05

0.2691833

1.3718833

2.3460667

4.2682

7.1659667

14.644033

23.287683

34.210233

46.565233

54.359333

8.00E-05

0.2690667

1.41815

2.4975833

4.7310667

9.6323167

16.210883

24.950917

35.979533

46.18115

59.05395

7.00E-05

0.2797

1.5245333

2.73555

5.70455

10.233417

18.691283

28.08415

40.165217

53.254283

62.658783

6.00E-05

0.29395

1.64815

3.18345

5.6891333

12.394317

22.412517

34.39305

43.790267

56.792533

66.610467

5.00E-05

0.3057167

0.7482667

3.3784667

7.4962667

14.319367

25.002167

38.500217

48.504167

58.532967

71.23395

4.00E-05

0.32555

1.90655

4.0798

8.5269167

18.6522

29.133117

41.577167

52.877717

63.498467

74.2049

3.00E-05

0.3573333

2.2570667

5.5666667

12.17225

22.0143

34.778783

45.4032

57.217

68.8245

83.56915

2.00E-05

0.4487167

2.9843667

7.9680833

16.277983

25.902283

40.653083

50.3917

67.005917

76.049067

87.9441

1.00E-05

0.5657

4.6324

12.738767

22.3845

35.64345

48.739217

61.586

70.405867

87.764633

101.07163

9.00E-06

0.5779

4.8042167

13.97685

23.499033

37.245083

48.107167

61.408567

75.853533

89.590633

106.89732

8.00E-06

0.6237333

5.3426

13.776983

24.87535

35.31665

50.382933

64.300433

77.051283

91.333683

105.29282

7.00E-06

0.6701667

5.6624333

11.376483

26.492033

38.42935

53.487317

64.339583

78.093217

96.4085

107.67667

6.00E-06

-1.043133

6.1118333

15.4332

27.433567

40.1873

52.854733

67.0226

79.72825

94.623517

109.36867

5.00E-06

0.8278667

6.6677333

16.386617

27.391317

42.329833

57.257867

69.3746

84.96685

100.74403

115.31163

4.00E-06

0.92955

7.2674

17.24095

30.8037

46.6526

57.598467

74.86045

88.066183

106.69952

118.55075

3.00E-06

1.0805333

8.0748

19.4551

32.2475

44.217

62.321083

78.466417

92.807433

112.71635

126.68888

2.00E-06

1.4429333

9.3541

22.58695

38.047467

52.679083

66.735667

82.635983

100.66913

121.80912

135.0271

1.00E-06

2.15025

11.933783

24.124117

40.834483

57.550183

77.955

97.3552

113.19602

138.3318

158.15827

计算迭代时间的表达式

卷积核一定可以提升网络性能吗?-分类0,2_第5张图片

用同样的办法

α=1.3075677654798437*x**-0.11553016292685217

 

             
 

2

3

4

5

6

7

8

9

α

1.2069413

1.1517078

1.1140588

1.0857056

1.0630759

1.0443111

1.0283242

1.0144261

∏α

 

1.1517078

1.2830702

1.3930366

1.4809036

1.546524

1.5903281

1.6132704

                 

计算

 

38.480969

53.179713

68.454014

84.646016

102.14023

121.35416

142.7457

实测

 

40.834483

57.550183

77.955

97.3552

113.19602

138.3318

158.15827

误差

 

0.0576355

0.0759419

0.1218778

0.1305445

0.0976694

0.1227313

0.0974503

 

综合上面的4个表格

卷积核并不是对所有的训练集都有正面价值,并不是所有的网络都可以通过增加卷积核的办法提升网络性能。

 

你可能感兴趣的:(用神经网络模拟分子)