【paddlepaddle速成】paddlepaddle图像分类从模型自定义到测试

文章首发于微信公众号《与有三学AI》

【paddlepaddle速成】paddlepaddle图像分类从模型自定义到测试

这是给大家准备的paddlepaddle与visualdl速成例子

这一次我们讲讲paddlepadle这个百度开源的机器学习框架,一个图像分类任务从训练到测试出结果的全流程。

将涉及到paddlepaddle和visualdl,git如下:https://github.com/PaddlePaddle

相关的代码、数据都在我们 Git 上,希望大家 Follow 一下这个 Git 项目,后面会持续更新不同框架下的任务。

https://github.com/longpeng2008/LongPeng_ML_Course

作者&编辑 | 言有三  

 

01 paddlepaddle是什么

正所谓google有tensorflow,facebook有pytorch,amazon有mxnet,作为国内机器学习的先驱,百度也有PaddlePaddle,其中Paddle即Parallel Distributed Deep Learning(并行分布式深度学习),整体使用起来与tensorflow非常类似。

sudo pip install paddlepaddle

安装就是一条命令,话不多说上代码。

 

02 paddlepaddle训练

训练包括三部分,数据的定义,网络的定义,以及可视化和模型的存储。

2.1 数据定义

定义一个图像分类任务的dataset如下:

from multiprocessing import cpu_count

import paddle.v2 as paddle

class Dataset:

    def __init__(self,cropsize,resizesize):

        self.cropsize = cropsize

        self.resizesize = resizesize

    def train_mapper(self,sample):

        img, label = sample

        img = paddle.image.load_image(img)

        img = paddle.image.simple_transform(img, self.resizesize, self.cropsize, True)

        #print "train_mapper",img.shape,label

        return img.flatten().astype('float32'), label

    def test_mapper(self,sample):

        img, label = sample

        img = paddle.image.load_image(img)

        img = paddle.image.simple_transform(img, self.resizesize, self.cropsize, False)

        #print "test_mapper",img.shape,label

        return img.flatten().astype('float32'), label

    def train_reader(self,train_list, buffered_size=1024):

        def reader():

            with open(train_list, 'r') as f:

                lines = [line.strip() for line in f.readlines()]

                print "len of train dataset=",len(lines)

                for line in lines:

                    img_path, lab = line.strip().split(' ')

                    yield img_path, int(lab)

        return paddle.reader.xmap_readers(self.train_mapper, reader,

                                          cpu_count(), buffered_size)

    def test_reader(self,test_list, buffered_size=1024):

        def reader():

            with open(test_list, 'r') as f:

                lines = [line.strip() for line in f.readlines()]

                print "len of val dataset=",len(lines)

                for line in lines:

                    img_path, lab = line.strip().split(' ')

                    yield img_path, int(lab)

        return paddle.reader.xmap_readers(self.test_mapper, reader,

                                          cpu_count(), buffered_size)

 

从上面代码可以看出:

(1) 使用了paddle.image.load_image进行图片的读取,
paddle.image.simple_transform进行了简单的图像变换,这里只有图像crop操作,更多的使用可以参考API。

(2)  使用了paddle.reader.xmap_readers进行数据的映射。

2.2 网络定义

# coding=utf-8
import paddle.fluid as fluid
def simplenet(input):
   # 定义卷积块 
   conv1 = fluid.layers.conv2d(input=input, num_filters=12,stride=2,padding=1,filter_size=3,act="relu")
   bn1 = fluid.layers.batch_norm(input=conv1)
   conv2 = fluid.layers.conv2d(input=bn1, num_filters=12,stride=2,padding=1,filter_size=3,act="relu")
   bn2 = fluid.layers.batch_norm(input=conv2)
   conv3 = fluid.layers.conv2d(input=bn2, num_filters=12,stride=2,padding=1,filter_size=3,act="relu")
   bn3 = fluid.layers.batch_norm(input=conv3)
   fc1 = fluid.layers.fc(input=bn3, size=128, act=None)
   return fc1,conv1

与之前的caffe,pytorch,tensorflow框架一样,定义了一个3层卷积与2层全连接的网络。为了能够更好的进行可视化,我们使用了PaddlePaddle Fluid,Fluid的设计也是用来让用户像Pytorch和Tensorflow Eager Execution一样可以执行动态计算而不需要创建图。

2.3可视化

paddlepaddle有与之配套使用的可视化框架,即visualdl。

visualdl是百度数据可视化实验室发布的深度学习可视化平台,它的定位与tensorboard很像,可视化内容包含了向量,参数直方图分布,模型结构,图像等功能,以后我们会详细给大家讲述,这次直接在代码中展示如何使用。

安装使用pip install --upgrade visualdl,使用下面的命令可以查看官方例子:

vdl_create_scratch_log

visualDL --logdir ./scratch_log --port 8080

http://127.0.0.1:8080

下面是loss和直方图的查看

【paddlepaddle速成】paddlepaddle图像分类从模型自定义到测试_第1张图片

【paddlepaddle速成】paddlepaddle图像分类从模型自定义到测试_第2张图片

在咱们项目中,具体使用方法如下

# 首先定义相关变量
# 创建VisualDL,并指定log存储路径
logdir = "./logs"
logwriter = LogWriter(logdir, sync_cycle=10)

# 创建loss的趋势图
with logwriter.mode("train") as writer:
   loss_scalar = writer.scalar("loss")

# 创建acc的趋势图
with logwriter.mode("train") as writer:
   acc_scalar = writer.scalar("acc")

# 定义输出频率
num_samples = 4
# 创建卷积层和输出图像的图形化展示
with logwriter.mode("train") as writer:
   conv_image = writer.image("conv_image", num_samples, 1)
   input_image = writer.image("input_image", num_samples, 1)

# 创建可视化的训练模型结构
with logwriter.mode("train") as writer:
   param1_histgram = writer.histogram("param1", 100)

然后在训练过程中进行记录,这是完整的训练代码,红色部分就是记录结果。

# coding=utf-8
import numpy as np
import os
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.v2 as paddle
from paddle.fluid.initializer import NormalInitializer
from paddle.fluid.param_attr import ParamAttr
from visualdl import LogWriter
from dataset import Dataset
from net_fluid import simplenet

# 创建VisualDL,并指定当前该项目的VisualDL的路径
logdir = "./logs"
logwriter = LogWriter(logdir, sync_cycle=10)

# 创建loss的趋势图
with logwriter.mode("train") as writer:
   loss_scalar = writer.scalar("loss")

# 创建acc的趋势图
with logwriter.mode("train") as writer:
   acc_scalar = writer.scalar("acc")

# 定义输出频率
num_samples = 4
# 创建卷积层和输出图像的图形化展示
with logwriter.mode("train") as writer:
   conv_image = writer.image("conv_image", num_samples, 1)
   input_image = writer.image("input_image", num_samples, 1)

# 创建可视化的训练模型结构
with logwriter.mode("train") as writer:
   param1_histgram = writer.histogram("param1", 100)

def train(use_cuda, learning_rate, num_passes, BATCH_SIZE=128):
   class_dim = 2
   image_shape = [3, 48, 48]
   image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
   label = fluid.layers.data(name='label', shape=[1], dtype='int64')

   net, conv1 = simplenet(image)
   # 获取全连接输出
   predict = fluid.layers.fc(
       input=net,
       size=class_dim,
       act='softmax',
       param_attr=ParamAttr(name="param1", initializer=NormalInitializer()))

   # 获取损失
   cost = fluid.layers.cross_entropy(input=predict, label=label)
   avg_cost = fluid.layers.mean(x=cost)

   # 计算batch,从而来求平均的准确率
   batch_size = fluid.layers.create_tensor(dtype='int64')
   print "batchsize=",batch_size
   batch_acc = fluid.layers.accuracy(input=predict, label=label, total=batch_size)

   # 定义优化方法
   optimizer = fluid.optimizer.Momentum(
       learning_rate=learning_rate,
       momentum=0.9,
       regularization=fluid.regularizer.L2Decay(5 * 1e-5))

   opts = optimizer.minimize(avg_cost)

   # 是否使用GPU
   place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
   # 创建调试器
   exe = fluid.Executor(place)
   # 初始化调试器
   exe.run(fluid.default_startup_program())
   # 保存结果
   model_save_dir = "./models"

   # 获取训练数据
   resizesize = 60
   cropsize = 48
   mydata = Dataset(cropsize=cropsize,resizesize=resizesize)
   mydatareader = mydata.train_reader(train_list='./all_shuffle_train.txt')
   train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=mydatareader,buf_size=50000),batch_size=128)
   
   # 指定数据和label的对应关系
   feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

   step = 0
   sample_num = 0
   start_up_program = framework.default_startup_program()
   param1_var = start_up_program.global_block().var("param1")

   accuracy = fluid.average.WeightedAverage()
   # 开始训练,使用循环的方式来指定训多少个Pass
   for pass_id in range(num_passes):
       # 从训练数据中按照一个个batch来读取数据
       accuracy.reset()
       for batch_id, data in enumerate(train_reader()):
           loss, conv1_out, param1, acc, weight = exe.run(fluid.default_main_program(),
                                                          feed=feeder.feed(data),
                                                          fetch_list=[avg_cost, conv1, param1_var, batch_acc,batch_size])
           accuracy.add(value=acc, weight=weight)
           pass_acc = accuracy.eval()

           # 重新启动图形化展示组件
           if sample_num == 0:
               input_image.start_sampling()
               conv_image.start_sampling()
           # 获取taken
           idx1 = input_image.is_sample_taken()
           idx2 = conv_image.is_sample_taken()
           # 保证它们的taken是一样的
           assert idx1 == idx2
           idx = idx1
           if idx != -1:
               # 加载输入图像的数据数据
               image_data = data[0][0]
               input_image_data = np.transpose(
                   image_data.reshape(image_shape), axes=[1, 2, 0])
               input_image.set_sample(idx, input_image_data.shape,
                                      input_image_data.flatten())
               # 加载卷积数据
               conv_image_data = conv1_out[0][0]
               conv_image.set_sample(idx, conv_image_data.shape,
                                     conv_image_data.flatten())
               # 完成输出一次
               sample_num += 1
               if sample_num % num_samples == 0:
                   input_image.finish_sampling()
                   conv_image.finish_sampling()
                   sample_num = 0

           # 加载趋势图的数据
           loss_scalar.add_record(step, loss)
           acc_scalar.add_record(step, acc)
           # 添加模型结构数据
           param1_histgram.add_record(step, param1.flatten())

          

           # 输出训练日志
           print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(pass_acc))
           step += 1
           model_path = os.path.join(model_save_dir,str(pass_id))
           if not os.path.exists(model_save_dir):
               os.mkdir(model_save_dir)
           fluid.io.save_inference_model(model_path,['image'],[predict],exe)

if __name__ == '__main__':
   # 开始训练
   train(use_cuda=False, learning_rate=0.005, num_passes=300)

2.4训练结果

看看acc和loss的曲线,可见已经收敛

【paddlepaddle速成】paddlepaddle图像分类从模型自定义到测试_第3张图片

 

03 paddlepaddle测试

训练的时候使用了fluid,测试的时候也需要定义调试器,加载训练好的模型,完整的代码如下

# encoding:utf-8
import sys
import numpy as np
import paddle.v2 as paddle
from PIL import Image
import os
import cv2
# coding=utf-8
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.v2 as paddle
from paddle.fluid.initializer import NormalInitializer
from paddle.fluid.param_attr import ParamAttr
from visualdl import LogWriter
from net_fluid import simplenet

if __name__ == "__main__":
   # 开始预测
   type_size = 2
   testsize = 48

   imagedir = sys.argv[1]
   images = os.listdir(imagedir)
       

   # 定义调试器
   save_dirname = "./models/299"
   exe = fluid.Executor(fluid.CPUPlace())
   inference_scope = fluid.core.Scope()
   with fluid.scope_guard(inference_scope):
   # 加载模型

 [inference_program,feed_target_names,fetch_targets] = fluid.io.load_inference_model(save_dirname,exe)

       predicts = np.zeros((type_size,1))
       for image in images:
           imagepath = os.path.join(imagedir,image)
           img = paddle.image.load_image(imagepath)
           img = paddle.image.simple_transform(img,testsize,testsize,False)
           img = img[np.newaxis,:]

           #print img.shape

           results = np.argsort(-exe.run(inference_program,feed={feed_target_names[0]:img},
                   fetch_list=fetch_targets)[0])
           label = results[0][0]
           predicts[label] += 1
   
   print predicts

由于所有框架的测试流程都差不多,所以就不对每一部分进行解释了,大家可以自行去看代码。

同时,在我的知乎专栏也会开始同步更新这个模块,欢迎来交流

https://zhuanlan.zhihu.com/c_151876233

注:部分图片来自网络

【paddlepaddle速成】paddlepaddle图像分类从模型自定义到测试_第4张图片

本系列完整文章:

第一篇:【caffe速成】caffe图像分类从模型自定义到测试

第二篇:【tensorflow速成】Tensorflow图像分类从模型自定义到测试

第三篇:【pytorch速成】Pytorch图像分类从模型自定义到测试

第四篇:【paddlepaddle速成】paddlepaddle图像分类从模型自定义到测试

第五篇:【Keras速成】Keras图像分类从模型自定义到测试

第六篇:【mxnet速成】mxnet图像分类从模型自定义到测试

第七篇:【cntk速成】cntk图像分类从模型自定义到测试

第八篇:【chainer速成】chainer图像分类从模型自定义到测试

第九篇:【DL4J速成】Deeplearning4j图像分类从模型自定义到测试

第十篇:【MatConvnet速成】MatConvnet图像分类从模型自定义到测试

第十一篇:【Lasagne速成】Lasagne/Theano图像分类从模型自定义到测试

第十二篇:【darknet速成】Darknet图像分类从模型自定义到测试

感谢各位看官的耐心阅读,不足之处希望多多指教。后续内容将会不定期奉上,欢迎大家关注有三公众号 有三AI

【paddlepaddle速成】paddlepaddle图像分类从模型自定义到测试_第5张图片

 

你可能感兴趣的:(开源框架)