python 实现 k-means均值聚类算法

python 实现 k-means均值聚类算法_第1张图片

 

# K-Means Clustering

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('Mall_Customers.csv')
X = dataset.iloc[:, 3:5].values

# Using the elbow method to find the optimal number of clusters
from sklearn.cluster import KMeans
wcss = []
for i in range(1,11):
    kmeans = KMeans(n_clusters = i, max_iter = 300, n_init = 10, init = 'k-means++', random_state = 0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
plt.plot(range(1,11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()

# Applying the k-means to the mall dataset
kmeans = KMeans(n_clusters = 5, max_iter = 300, n_init = 10, init = 'k-means++', random_state = 0)
y_kmeans = kmeans.fit_predict(X)

# Visualizing the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Careful')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Standard')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Target')
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Careless')
plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Sensible')
plt.scatter(kmeans.cluster_centers_[:, 0],  kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of clients')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()

你可能感兴趣的:(机器学习A-Z课程)