- python字符串与正则表达式的应用上机
小学生的拼搏
高级程序语言
一、实验目的和要求目的:①了解字符串编码规则②掌握字符串索引③掌握字符串操作④掌握正则表达式二、实验数据记录、处理及结果分析(1)上课练习题,检查字符串是否合法,长度8-16位,支持大小写当输入内容为Helloworld#123764356788时:当输入内容为Helloworld#6788时:程序段为:importredefchecklen(pwd):returnlen(pwd)>=8andle
- 强化学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1什么是强化学习?强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,它关注的是智能体(Agent)如何在环境中通过与环境交互来学习最优的行为策略。与其他机器学习方法不同,强化学习并不依赖于预先标注的数据,而是通过试错的方式来学习。想象一下,你正在训练一只小狗学习坐下。你不会给它看成千上万张“坐下”的照片,而是会给它一些指令,比如“坐下”,如果它照
- 强化学习在连续动作空间的应用:DDPG与TD3
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1强化学习简介强化学习(ReinforcementLearning,简称RL)是一种机器学习方法,它通过让智能体(Agent)在环境(Environment)中与环境进行交互,学习如何根据观察到的状态(State)选择动作(Action),以最大化某种长期累积奖励(Reward)的方法。强化学习的核心问题是学习一个策略(Policy),即在给定状态下选择动作的映射关系。1.2连续动
- 【转】时间序列分析——基于R,王燕
weixin_30780221
r语言
《时间序列分析——基于R》王燕,读书笔记笔记:一、检验:1、平稳性检验:图检验方法:时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包2、纯随机性检验、
- 三节课产品经理P1 学习总结
kyle_1111
PDM产品管理Certificate证书
完成三节课产品经理P1课程,以全优成绩毕业。课程目标用户,是未入行及2年内的初级产品经理,目的是打牢基本功,培养基本产品感。方式是每周线上课程(录像)+作业,助教会对每次作业进行点评,鼓励迭代修改。课程共六周,分别为:产品视角用户需求功能&流程原型功能点&产品调研需求文档对于自身,课程的最大帮助在于实践。因为教材干货,网上资料很多,但容易只看不练。看了很多、很深入,但等到要输出时照样两眼放白。通过
- 《构建之法》 –读书笔记
Lishq2004
读书笔记软件开发软件工程读书笔记构建
《构建之法》–读书笔记lishq为什么读这本书:这是一本非常接地气的讲《软件工程》的书,第一次了解到这本书是从豆瓣上看到,看了下密密麻麻的正面评论,觉得内容应该不错。翻阅了几个章节,发现干货确实挺多。为方便大家了解,摘抄作者简介以及部分书评如下。---------------------------------------------------------------------------
- Java程序性能优化读书笔记(一):Java性能调优概述
anxunnian1498
java数据库操作系统
程序性能的主要表现点:执行速度:程序的反映是否迅速,响应时间是否足够短内存分配:内存分配是否合理,是否过多地消耗内存或者存在内存泄漏启动时间:程序从运行到可以正常处理业务需要花费多少时间负载承受能力:当系统压力上升时,系统的执行速度、响应时间的上升曲线是否平缓衡量程序性能的主要指标:执行时间:程序从运行到结束所使用的时间CPU时间:函数或者线程占用CPU的时间内存分配:程序在运行时占用内容的空间磁
- DeepSeek-R1-Zero 与 DeepSeek-R1 的异同与优劣分析
AI生成曾小健
Deepseek原理与使用人工智能
DeepSeek-R1-Zero与DeepSeek-R1的异同与优劣分析一、相同点核心训练方法:两者均基于强化学习(RL),采用GroupRelativePolicyOptimization(GRPO)算法,通过组内样本的奖励相对比较优化策略模型。目标均为提升语言模型的复杂推理能力(如数学、代码、科学推理)。基础模型:均以DeepSeek-V3-Base作为初始模型,共享相同的架构
- The Devops Handbook 读书笔记01
Alice_HappyAlice ^_^
TheDevopsHandbook读书笔记devops
今天看了一下序,了解了一下Devops这本书是干啥的?ThepurposeoftheDevOpsHandbookistogiveyouthetheory,principles,andpracticesyouneedtosuccessfullystartyourDevOpsinitiativeandachieveyourdesiredoutcomes.Devops原则想要做到的事情,就是更快,更低风
- 架构师面试(二):计算机编程基础
棕生
架构师面试架构师面试协程操作系统epollIOCPsocket编程
问题(该题目考察计算机编程基础,看看大家在学生期间有没有认真上课)下面说法正确的有哪几项?A、协程在创建、切换和销毁时,操作系统都是无法感知的;B、理论上讲,用户应用程序是可以脱离操作系统运行起来的;C、Linux下的epoll是同步IO模型,Windows下的IOCP是异步IO模型;D、在TCP网络编程中,相对于单线程来说,多个线程同时写socket效率是更高的。解析A选项:协程是轻量级的用户级
- Effective Objective-C 2.0 读书笔记——协议和分类
小鹿撞出了脑震荡
objective-c分类ios
EffectiveObjective-C2.0读书笔记——协议和分类文章目录EffectiveObjective-C2.0读书笔记——协议和分类在分类中添加属性使用“class-continuation分类”隐藏实现细节通过协议提供匿名对象在分类中添加属性尽管从技术上说,分类里也可以声明属性,但这种做法还是要尽量避免。原因在于,除了class-continuation分类之外,其他分类都无法向类中
- 【洛谷入门赛】B4044 奇迹战神 202410 场
Igallta_813622
题解c++c语言学习笔记
闲话水桶没有闲话。题意一共有nnn个课程,对于每个课程,给出www和ddd,第xxx周的时候,如果满足(d−1)÷x(d-1)\divx(d−1)÷x的余数是000((d−1)mod x=0(d-1)\modx=0(d−1)modx=0)那这一周的星期www就要上这门课。而且:当前这一天是第一周的星期六。问你,距离这一天最近的课还有多久上课。思路首先,我们要输入。cin>>n;for(inti=
- Deepseek背后的强化学习RL入门理解和Python脚本实现
大F的智能小课
人工智能
强化学习简单原理强化学习是一种让智能体通过与环境的交互来学习最优行为策略的方法。想象一下,你有一只小狗,你想让它学会自己找到回家的路。你可以给小狗一些奖励(比如小零食),当它做出正确的动作(比如向家的方向走)时,就给它奖励;当它走错方向时,就不给奖励。小狗会逐渐学会哪些动作能获得奖励,从而找到回家的路。强化学习中的智能体就像是这只小狗,环境就是小狗所处的世界,奖励就是你给它的零食。在强化学习中,智
- 【必看】凭啥?DeepSeek如何用1/179的训练成本干到GPT-4o 98%性能
大F的智能小课
人工智能算法
一、DeepSeek降低训练成本的核心方法1.1创新训练方法DeepSeek通过独特的训练方案显著降低了训练成本。其核心策略包括减少监督微调(SFT)步骤,仅依赖强化学习(RL)技术。DeepSeek-R1-Zero版本完全跳过SFT,仅通过RL进行训练。尽管初期计算开销较大,但添加少量冷启动数据后,训练稳定性和模型推理能力大幅提升。此外,DeepSeek还采用了组相对策略优化(GRPO)算法替代
- Python基于 Opencv+wxPython 的人脸识别上课考勤系统,附源码
程序员徐师兄
Python毕业设计pythonopencv人脸识别上课考勤系统人脸识别上课考勤wxPython
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《100套》Java微信小程序项目实战《100套》感兴趣的可以先收藏起来,还有大家
- Python 基于 OpenCV 的人脸识别上课考勤系统(附源码,部署教程)
2013crazy
pythonopencv开发语言Python人脸识别python人脸识别考勤
博主介绍:✌2013crazy、10年大厂程序员经历。全网粉丝12W+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《100套》Python项目实战《100套》感兴趣的可以先收藏起来,还有大
- 强化学习算法:蒙特卡洛树搜索 (Monte Carlo Tree Search) 原理与代码实例讲解
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
强化学习算法:蒙特卡洛树搜索(MonteCarloTreeSearch)原理与代码实例讲解关键词:蒙特卡洛树搜索,强化学习,决策树,搜索算法,博弈策略,应用场景,代码实现1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是人工智能领域的一个核心分支,专注于通过与环境交互,学习最优策略以实现特定目标。传统的强化学习算法,如Q-learning、SARSA等,通常依
- mnist数据集下载及使用
小句
pytorch机器学习
#mnist数据集在百度云盘里#链接:https://pan.baidu.com/s/1ca2rL2-0_JLtnH1YQ3otvA#提取码:uq3d#pytorch自带数据集的使用importtorchvisionfromtorchvision.datasetsimportMNISTmnist=MNIST(root="./data",train=True,download=False)print
- 教师计算机应用能力现状分析,信息技术教学应用个人现状分析以及发展计划
你看星星坠了
教师计算机应用能力现状分析
信息技术教学应用个人现状分析以及发展计划一、结合自身的情况,谈谈自身运用信息技术教学的情况,并进行自我评价。随着信息化的发展,我上课经常借助一些相关的教学软件与教学设备整合在一起来完成教学的。经常用到的软件是office与画图,设备是多媒体技术、投影系统等等。借助软件与设备整合在一起可以实现课堂之上和课堂之后教师、学生之间的更广泛、更自由的交流。自我评价:我利用现代信息化,发挥资源优势,突破教学重
- AI分支知识之机器学习,深度学习,强化学习的关系
王钧石的技术博客
大模型人工智能机器学习深度学习
机器学习,深度学习,强化学习的关系这一篇文章我们来探讨下AI领域中机器学习(ML)、深度学习(DL)和强化学习(RL)的关系。一、机器学习(ML):从数据中找到模式核心思想:给定大量数据,计算机从数据中总结规律,形成一个数学模型,然后用这个模型去处理新的数据。例子:判断一封邮件是垃圾邮件还是正常邮件传统编程方式:人类自己写规则,比如:如果邮件标题包含“中奖”、“免费”、“转账”→这是垃圾邮件否则这
- 基于JavaWeb的校园故障报修系统(源码+数据脚本+论文+技术文档)
程序猿麦小七
毕业设计Java后台JavaWeb数据库java故障报修
项目描述临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下,你想解决的问题,今天给大家介绍一篇基于JavaWeb的校园故障报修系统的设计与实现。功能需求早期学校各种故障问题都是通过外边的去找专门处理的维修师傅,列如在学生正常上课时可能出现的电路故障或是网络故障,为
- linux 高性能 服务器,linux高性能服务器编程--读书笔记
weixin_39637059
linux高性能服务器
2014年7月1日1、tcp报头格式6个标志位synackpshrstfinurg2、半连接下read读到的字节数为03、Tcp头部报文最长为60字节,20字节的固定头部,选项信息最多40字节。选项信息可以包含窗口扩大因子的设置,最大报文段的限制,sack的设置,时间戳的设置等8项。4、Tcp头部中的窗口大小用于流量控制5、netstat查看当前tcp的状态6、Tcp状态转移图终止tcp连接,而不
- Deepseek成功启示:从 TRPO 到 GRPO训练LLM
大模型之路
强化学习大模型(LLM)人工智能LLM强化学习deepseekGRPOTRPO
DeepSeek(DeepSeek-V3深度剖析:下一代AI模型的全面解读)最近在AI社区引起了不小的轰动,这要归功于它以相对较低的成本提供令人印象深刻的性能。这是深入了解大型语言模型LLMs如何训练的绝佳机会。本文将深入探讨LLMs的训练过程,特别是强化学习(ReinforcementLearning,RL)(深度解析DeepSeekR1:强化学习与知识蒸馏的协同力量)在这一领域的应用,从TRP
- 《华为数据之道》读书笔记三--元数据管理
小木谈数
华为数据之道读书笔记大数据
一、元数据定义及分类元数据定义:元数据是描述数据的数据,用于打破业务和IT之间的语言障碍,帮助业务更好地理解数据。元数据分类:1)业务元数据:用户访问数据时了解业务含义的途径,包括资产目录、Owner、数据密级等。2)技术元数据:实施人员开发系统时使用的数据,包括物理模型的表与字段、ETL规则、集成关系等。3)操作元数据:数据处理日志及运营情况数据,包括调度频度、访问记录等。【备注说明】核心要搞清
- DeepSeek-R1深度报告:基于Python强化学习的前沿长链推理模型揭秘与实战——兼谈SEO优化与实用经验分享
快撑死的鱼
算法工程师面试宝典(面试必备)python搜索引擎开发语言
【DeepSeek-R1深度报告:基于Python强化学习的前沿长链推理模型揭秘与实战——兼谈SEO优化与实用经验分享】配合此文章使用,效果更佳:DeepSeek-R1深度报告——50道相关面试题——深刻理解相关概念(DeepSeek-R1大模型+强化学习(RL)+推理能力)一、前言与背景铺垫在当今人工智能与大语言模型(LargeLanguageModel,LLM)快速演进的时代,如何有效提升大模
- DeepSeek模型与OpenAI模型原理和技术架构的异同分析
程序猿000001号
DeepSeek大模型
DeepSeek模型与OpenAI模型原理和技术架构的异同分析一、模型原理(一)DeepSeekR1DeepSeekR1的核心原理是基于强化学习(RL)的训练方式,其创新之处在于不依赖任何监督微调(SFT)数据,仅通过强化学习实现推理能力的自主进化。它采用GroupRelativePolicyOptimization(GRPO)算法,通过组内奖励对比优化策略,避免了传统RL对复杂价值模型的依赖。此
- 【论文阅读】DeepSeek-R1:通过强化学习激励LLMs的推理能力 | DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via RL
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型DeepSeek计算论文阅读deepseekagiaillmagentcot
DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearningDeepSeek-R1:通过强化学习激励LLMs的推理能力
[email protected]目录DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcem
- SRMT:一种融合共享记忆与稀疏注意力的多智能体强化学习框架
在人工智能(AI)和强化学习(RL)领域的发展进程中,长期记忆维持和决策优化一直是核心技术难点。传统强化学习模型在经验回溯方面存在局限性,这显著制约了其在复杂动态环境中的应用效果。自反射记忆Transformer(SRMT)作为一种新型记忆增强型transformer架构,专注于提升基于AI的决策能力和多智能体协同效果。本研究将系统阐述SRMT的技术架构、核心功能、应用场景及实验数据,深入分析其在
- [论文笔记] Deepseek技术报告
心心喵
论文笔记论文阅读人工智能
1.总体概述背景与目标报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)的推理能力,旨在探索在不依赖大规模监督微调(SFT)的情况下,模型如何自我进化并形成强大的推理能力。介绍了两代模型:DeepSeek-R1-Zero(纯RL,无SFT冷启动数据)和DeepSeek-R1(在RL前加入少量冷启动数据和多阶段训练流程,提升可读性及推理表现)。核心思路直接在基础模型上应用大规模强化学习,利用
- gym-anytrading
AAA客服小高
人工智能
参考:https://github.com/upb-lea/gym-electric-motorAnyTrading是一组基于reinforcementlearning(RL)的tradingalgorithms(交易算法)的OpenAIGym环境集合。该项目主要用于foreignexchange(FOREX)和stockmarkets(股票市场),并提供多个Gymenvironments,以简化
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理