Python matplotlib,数据可视化,绘制直方图,hist

条形图一般用于展示离散型数据。直方图一般用于统计连续型数据。

直方图一般对连续型数据根据区间进行离散化,然后统计各个区间上的频率或频数。

 

demo.py(绘制直方图,hist):

# coding=utf-8
from matplotlib import pyplot as plt

# 连续型数据
a=[131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]

# 计算组数 (根据区间分组)
d = 5  # 组距(区间大小) 根据情况设置
num_bins = (max(a)-min(a))//d + 1  # 组数 (//表示向下取整,如果不能整除需要加1,如果不能整除还需要在hist()绘制时通过range参数指定总数据的总区间)
print(max(a), min(a), max(a)-min(a))  # 156 78 78 (根据数据情况设置组距)
print(num_bins)  # 26

# 设置图形大小
plt.figure(figsize=(20,8), dpi=80)

# 绘制直方图
plt.hist(a, num_bins, normed=True, range=(78, 158))
# normed表示频率直方图(y轴数据不超过1),默认是频数直方图(y轴表示区间上的个数)
# range表示总数据的总区间(默认是最小值与最大值之间。如果组距不能被差值整除,就需要指定一个可以整除的总区间,否则x轴上的刻度会不好匹配)

# 设置x轴的刻度
plt.xticks(range(min(a), max(a)+d, d))

# 绘制网格
plt.grid()

plt.show()

Python matplotlib,数据可视化,绘制直方图,hist_第1张图片

 

 

你可能感兴趣的:(Python+)