OpenCV4Android开发实录(2): 使用OpenCV3.4.1库实现人脸检测

OpenCV4Android开发实录(2): 使用OpenCV3.3.0库实现人脸检测

转载请声明出处:http://write.blog.csdn.net/postedit/78992490


OpenCV4Android系列

1. OpenCV4Android开发实录(1):移植OpenCV3.3.0库到Android Studio

2.OpenCV4Android开发实录(2): 使用OpenCV3.3.0库实现人脸检测


上一篇文章OpenCV4Android开发实录(1):移植OpenCV3.3.0库到Android Studio大概介绍了下OpenCV库的基本情况,阐述了将OpenCV库移植到Android Studio项目中的具体步骤。本文将在此文的基础上,通过对OpenCV框架中的人脸检测模块做相应介绍,然后实现人脸检测功能。

一、人脸检测模块移植

1.拷贝opencv-3.3.0-android-sdk\OpenCV-android-sdk\samples\face-detection\jni目录到工程app module的main目录下

  OpenCV4Android开发实录(2): 使用OpenCV3.4.1库实现人脸检测_第1张图片

2.修改jni目录下的Android.mk

(1) 将 

     #OPENCV_INSTALL_MODULES:=off
     #OPENCV_LIB_TYPE:=SHARED

 修改为:
     OPENCV_INSTALL_MODULES:=on
     OPENCV_LIB_TYPE:=SHARED
其中,OPENCV_INSTALL_MODULES的作用是在打包apk时加载OpenCV的动态库;OPENCV_LIB_TYPE的作用是指定OpenCV库的类型为动态库。

(2)

 ifdef OPENCV_ANDROID_SDK
    ifneq ("","$(wildcard $(OPENCV_ANDROID_SDK)/OpenCV.mk)")
    	include ${OPENCV_ANDROID_SDK}/OpenCV.mk
    else
    	include ${OPENCV_ANDROID_SDK}/sdk/native/jni/OpenCV.mk
   endif
  	include ../../sdk/native/jni/OpenCV.mk
   endif

         修改为:
   include E:\Environment\opencv-3.3.0-android-sdk\OpenCV-android-sdk\sdk\native\jni\OpenCV.mk

其中,include包含的就是OpenCV SDK中OpenCV.mk文件所存储的绝对路径。最终Android.mk修改效果如下:

OpenCV4Android开发实录(2): 使用OpenCV3.4.1库实现人脸检测_第2张图片

3.修改jni目录下Application.mk。由于在导入OpenCV libs时只拷贝了armeabi 、armeabi-v7a、arm64-v8a,因此这里指定编译平台也为上述三个;修改APP_PLaTFORM版本为android-16(可根据自身情况而定),具体如下:

      APP_STL := gnustl_static
      APP_CPPFLAGS := -frtti –fexceptions
       # 指定编译平台
       APP_ABI := armeabi armeabi-v7a arm64-v8a
      # 指定Android平台
      APP_PLATFORM := android-16

4.修改DetectionBasedTracker_jni.h和DetectionBasedTracker_jni.cpp文件,将源文件中所有包含前缀“Java_org_opencv_samples_facedetect_”替换为“Java_com_jiangdg_opencv4android_natives_”,其中com.jiangdg.opencv4android.natives是Java层类DetectionBasedTracker.java所在的包路径,该类包含了人脸检测相关的native方法,否则,在调用自己编译生成的so库时会提示找不到该本地函数错误,以DetectionBasedTracker_jni.h为例:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include 
/* Header for class org_opencv_samples_fd_DetectionBasedTracker */

#ifndef _Included_org_opencv_samples_fd_DetectionBasedTracker
#define _Included_org_opencv_samples_fd_DetectionBasedTracker
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class:     org_opencv_samples_fd_DetectionBasedTracker
 * Method:    nativeCreateObject
 * Signature: (Ljava/lang/String;F)J
 */
JNIEXPORT jlong JNICALL Java_com_jiangdg_opencv4android_natives_DetectionBasedTracker_nativeCreateObject
  (JNIEnv *, jclass, jstring, jint);

/*
 * Class:     org_opencv_samples_fd_DetectionBasedTracker
 * Method:    nativeDestroyObject
 * Signature: (J)V
 */
JNIEXPORT void JNICALL Java_com_jiangdg_opencv4android_natives_DetectionBasedTracker_nativeDestroyObject
  (JNIEnv *, jclass, jlong);

/*
 * Class:     org_opencv_samples_fd_DetectionBasedTracker
 * Method:    nativeStart
 * Signature: (J)V
 */
JNIEXPORT void JNICALL Java_com_jiangdg_opencv4android_natives_DetectionBasedTracker_nativeStart
  (JNIEnv *, jclass, jlong);

/*
 * Class:     org_opencv_samples_fd_DetectionBasedTracker
 * Method:    nativeStop
 * Signature: (J)V
 */
JNIEXPORT void JNICALL Java_com_jiangdg_opencv4android_natives_DetectionBasedTracker_nativeStop
  (JNIEnv *, jclass, jlong);

  /*
   * Class:     org_opencv_samples_fd_DetectionBasedTracker
   * Method:    nativeSetFaceSize
   * Signature: (JI)V
   */
  JNIEXPORT void JNICALL Java_com_jiangdg_opencv4android_natives_DetectionBasedTracker_nativeSetFaceSize
  (JNIEnv *, jclass, jlong, jint);

/*
 * Class:     org_opencv_samples_fd_DetectionBasedTracker
 * Method:    nativeDetect
 * Signature: (JJJ)V
 */
JNIEXPORT void JNICALL Java_com_jiangdg_opencv4android_natives_DetectionBasedTracker_nativeDetect
  (JNIEnv *, jclass, jlong, jlong, jlong);

#ifdef __cplusplus
}
#endif
#endif

5.打开Android Studio中的Terminal窗口,使用cd命令切换到工程jni目录所在位置,并执行ndk-build命令,然后会自动在工程的app/src/main目录下生成libs和obj目录,其中libs目录存放的是目标动态库libdetection_based_tracker.so。

OpenCV4Android开发实录(2): 使用OpenCV3.4.1库实现人脸检测_第3张图片

生成so库:

OpenCV4Android开发实录(2): 使用OpenCV3.4.1库实现人脸检测_第4张图片

注意:如果执行ndk-build命令提示命令不存在,说明你的ndk环境变量没有配置好。

6.修改app模块build.gradle中的sourceSets字段,禁止自动调用ndk-build命令,设置目标so的存放路径,代码如下:

android {
    compileSdkVersion 25
    defaultConfig {
        applicationId "com.jiangdg.opencv4android"
        minSdkVersion 15
        targetSdkVersion 25
        versionCode 1
        versionName "1.0"
    }
    ….// 代码省略
   sourceSets {
		main {
	        jni.srcDirs = []				 //禁止自动调用ndk-build命令
        	jniLibs.srcDir 'src/main/libs'  // 设置目标的so存放路径
}
    }
    ….// 代码省略
}

      其中,jni.srcDirs = []的作用是禁用gradle默认的ndk-build,防止AS自己生成android.mk编译jni工程,jniLibs.srcDir 'src/main/libs'的作用设置目标的so存放路径,以将自己生成的so组装到apk中。

二、源码解析
使用OpenCV3.3.0库实现人脸检测功能主要包含以下四个步骤,即:
(1) 初始化加载OpenCV库引擎;
(2) 通过OpenCV库开启Camera渲染;
(3) 加载人脸检测模型;
(4) 调用人脸检测本地动态库实现人脸识别;
1.初始化加载OpenCV库引擎
OpenCV库的加载有两种方式,一种通过OpenCV Manager进行动态加载,也就是官方推荐的方式,这种方式需要另外安装OpenCV Manager,主要通过调用OpenCVLoader.initAsync()方法进行初始化;另一种为静态加载,也就是本文所使用的方法,即先将相关架构的so包拷贝到工程的libs目录,通过调用OpenCVLoader.initDebug()方法进行初始化,类似于调用system.loadLibrary("opencv_java")。
if (!OpenCVLoader.initDebug()) {
    // 静态加载OpenCV失败,使用OpenCV Manager初始化
    // 参数:OpenCV版本;上下文;加载结果回调接口
     OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_3_0, 
    this, mLoaderCallback);
 } else {
     // 如果静态加载成功,直接调用onManagerConnected方法
     mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS);
 }
其中,mLoaderCallback为OpenCV库初始化状态回调接口,当OpenCV被初始化成功后其onManagerConnected(int status)方法会被调用,而我们就可以在该方法中处理本地动态库的加载、加载人脸检测模型文件、初始化人脸检测引擎以及开启Camera渲染等操作,具体代码如下:
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
   switch (status) {
      case LoaderCallbackInterface.SUCCESS:
          // OpenCV初始化加载成功,再加载本地so库
          System.loadLibrary("detection_based_tracker");
          // 加载人脸检测模型
          …..
         // 初始化人脸检测引擎
         …..
         // 开启渲染Camera
         mCameraView.enableView();
         break;
      default:
         super.onManagerConnected(status);
         break;
     }
   }
};
2. 通过OpenCV库开启Camera渲染
在OpenCV中与Camera紧密相关的主要有两个类,即CameraBridgeViewBase和JavaCameraView,其中,CameraBridgeViewBase是一个基类,继承于SuarfaceView和SurafaceHolder.Callback接口,用于实现Camera与OpenCV库之间的交互,它主要的作用是控制Camera、处理视频帧以及调用相关内部接口对视频帧做相关调整,然后将调整后的视频帧数据渲染到手机屏幕上。比如enableView()方法、disableView()方法用于连接到Camera和断开与Camera的连接,代码如下:
    public void enableView() {
        synchronized(mSyncObject) {
            mEnabled = true;
            checkCurrentState();
        }
}
   public void disableView() {
        synchronized(mSyncObject) {
            mEnabled = false;
            checkCurrentState();
        }
}
其中,checkCurrentState()方法用于更新Camera的渲染状态,它调用了processEnterState()方法来启动或停用Camera,以及将Camera的状态对外回调。为了方便开发者实时获取Camera的连接状态,CameraBridgeViewBase还提供了一个setCvCameraViewListener(CvCameraViewListener2 listener)方法,参数listener其一个内部接口,它包括三个方法:onCameraViewStarted(int width, int height)、void onCameraViewStopped()、Mat onCameraFrame(CvCameraViewFrame inputFrame),分别用于对外回调Camera连接状态和传递Camera的实时视频帧数据。
  private void checkCurrentState() {
        Log.d(TAG, "call checkCurrentState");
        int targetState;


        if (mEnabled && mSurfaceExist && getVisibility() == VISIBLE) {
            targetState = STARTED;
        } else {
            targetState = STOPPED;
        }


        if (targetState != mState) {
            /* The state change detected. Need to exit the current state and enter target state */
            processExitState(mState);
            mState = targetState;
            processEnterState(mState);
        }
    }
    private void processEnterState(int state) {
        Log.d(TAG, "call processEnterState: " + state);
        switch(state) {
        case STARTED:
            // 调用connectCamera()抽象方法,启动Camera
            onEnterStartedState();
            // 调用连接成功监听器接口方法
            if (mListener != null) {
                mListener.onCameraViewStarted(mFrameWidth, mFrameHeight);
            }
            break;
        case STOPPED:
            // 调用disconnectCamera()抽象方法,停用Camera
            onEnterStoppedState();
            // 调用断开连接监听器接口方法
            if (mListener != null) {
                mListener.onCameraViewStopped();
            }
            break;
        };
}
       既然CameraBridgeViewBase是一个基类,与Camera紧密相关的connectCamera()和disconnectCamera()又是抽象方法,那么就必定会有一个子类来实现这两个方法,而这个子类就是JavaCameraView。JavaCameraView继承于CameraBridgeViewBase和PreviewCallback接口,是衔接OpenCV和Camera的桥梁,是Camera启动、禁止的实际实现者,在这个类里我们可以看到关于Camera很多熟悉的操作。源码如下:
  @Override
    protected boolean connectCamera(int width, int height) {
        // 初始化Camera,连接到Camera
        if (!initializeCamera(width, height))
            return false;
        mCameraFrameReady = false;
        // 开启一个与Camera相关的工作线程CameraWorker
        Log.d(TAG, "Starting processing thread");
        mStopThread = false;
        mThread = new Thread(new CameraWorker());
        mThread.start();
        return true;
    }


    @Override
    protected void disconnectCamera() {
        // 断开Camera连接,释放相关资源
        try {
            mStopThread = true;
            Log.d(TAG, "Notify thread");
            synchronized (this) {
                this.notify();
            }
            // 停止工作线程
            if (mThread != null)
                mThread.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            mThread =  null;
        }


        /* Now release camera */
        releaseCamera();


        mCameraFrameReady = false;
}
     CameraWorker是一个工作线程,用于处理从onPreviewFrame获得的视频帧数据,其存储在一个Mat类型的数组中。它会不断调用父类CameraBridgeViewBase的deliverAndDrawFrame方法,将处理后的视频帧数据流通过调用内部接口CvCameraViewListener2的onCameraFrame(CvCameraViewFrame frame)对外回调。
private class CameraWorker implements Runnable {
        @Override
        public void run() {
            do {
                 …..//代码省略
                if (!mStopThread && hasFrame) {
                    if (!mFrameChain[1 - mChainIdx].empty())
                        deliverAndDrawFrame(mCameraFrame[1 - mChainIdx]);
                }
            } while (!mStopThread);
        }
    }
3. 加载人脸检测模型
    为了得到更好的人脸检测性能,OpenCV在SDK中提供了多个frontface检测器(人脸模型),存放在..\opencv-3.3.0-android-sdk\OpenCV-android-sdk\sdk\etc\目录下,这篇对OpenCV自带的人脸检测模型做了比较,结果显示LBP实时性要好些。因此,本文选用目lbpcascades录下lbpcascade_frontalface.xml模型,该模型包括了3000个正样本和1500个负样本,我们将其拷贝到AS工程的res/raw目录下,并通过getDir方法保存到/data/data/com.jiangdg.opencv4android/ cascade目录下。
InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
FileOutputStream os = new FileOutputStream(mCascadeFile);
byte[] buffer = new byte[4096];
int byteesRead;
while ((byteesRead = is.read(buffer)) != -1) {
    os.write(buffer, 0, byteesRead);
}
is.close();
os.close();
注:关于模型的训练在以后的博文中会讨论到。
4. 人脸检测
在opencv-3.3.0-android-sdk的face-detection示例项目中,提供了CascadeClassifier和
DetectionBasedTracker两种方式来实现人脸检测,其中,CascadeClassifier是OpenCV用于人脸检测的一个级联分类器,DetectionBasedTracker是通过JNI编程实现的人脸检测。两种方式我都试用了下,发现DetectionBasedTracker方式还是比CascadeClassifier稳定些,CascadeClassifier会存在一定频率的误检。
public class DetectionBasedTracker {
    private long mNativeObj = 0;
    // 构造方法:初始化人脸检测引擎
    public DetectionBasedTracker(String cascadeName, int minFaceSize) {
        mNativeObj = nativeCreateObject(cascadeName, minFaceSize);
    }
    // 开始人脸检测
    public void start() {
        nativeStart(mNativeObj);
    }
    // 停止人脸检测
    public void stop() {
        nativeStop(mNativeObj);
    }
    // 设置人脸最小尺寸
    public void setMinFaceSize(int size) {
        nativeSetFaceSize(mNativeObj, size);
    }


    // 检测
    public void detect(Mat imageGray, MatOfRect faces) {
        nativeDetect(mNativeObj, imageGray.getNativeObjAddr(), faces.getNativeObjAddr());
    }
    // 释放资源
    public void release() {
        nativeDestroyObject(mNativeObj);
        mNativeObj = 0;
    }
    // native方法
    private static native long nativeCreateObject(String cascadeName, int minFaceSize);
    private static native void nativeDestroyObject(long thiz);
    private static native void nativeStart(long thiz);
    private static native void nativeStop(long thiz);
    private static native void nativeSetFaceSize(long thiz, int size);
    private static native void nativeDetect(long thiz, long inputImage, long faces);
}
初始化DetectionBasedTracker后,我们只需要在CvCameraViewListener2接口的onCameraFrame方法中对每帧图片进行人脸检测即可。
@Override
public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
         ….// 代码省略
        // 获取检测到的脸部数据
        MatOfRect faces = new MatOfRect();
        …// 代码省略
        if (mNativeDetector != null) {
            mNativeDetector.detect(mGray, faces);
         }
        // 绘制检测框
        Rect[] facesArray = faces.toArray();
        for (int i = 0; i < facesArray.length; i++) {
            Imgproc.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
        }
        return mRgba;
    }

注:由于篇幅原因,关于人脸检测的C/C++实现代码(原理),我们将在后续文章中讨论。

三、效果演示

1. FaceDetectActivity.class

/**
 * 人脸检测
 * 
 * Created by jiangdongguo on 2018/1/4.
 */

public class FaceDetectActivity extends AppCompatActivity implements CameraBridgeViewBase.CvCameraViewListener2 {
    private static final int JAVA_DETECTOR = 0;
    private static final int NATIVE_DETECTOR = 1;
    private static final String TAG = "FaceDetectActivity";
    @BindView(R.id.cameraView_face)
    CameraBridgeViewBase mCameraView;


    private Mat mGray;
    private Mat mRgba;
    private int mDetectorType = NATIVE_DETECTOR;
    private int mAbsoluteFaceSize = 0;
    private float mRelativeFaceSize = 0.2f;
    private DetectionBasedTracker mNativeDetector;
    private CascadeClassifier mJavaDetector;
    private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255);


    private File mCascadeFile;
    private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
        @Override
        public void onManagerConnected(int status) {
            switch (status) {
                case LoaderCallbackInterface.SUCCESS:
                    // OpenCV初始化加载成功,再加载本地so库
                    System.loadLibrary("detection_based_tracker");


                    try {
                        // 加载人脸检测模式文件
                        InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
                        File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
                        mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
                        FileOutputStream os = new FileOutputStream(mCascadeFile);
                        byte[] buffer = new byte[4096];
                        int byteesRead;
                        while ((byteesRead = is.read(buffer)) != -1) {
                            os.write(buffer, 0, byteesRead);
                        }
                        is.close();
                        os.close();
                        // 使用模型文件初始化人脸检测引擎
                        mJavaDetector = new CascadeClassifier(mCascadeFile.getAbsolutePath());
                        if (mJavaDetector.empty()) {
                            Log.e(TAG, "加载cascade classifier失败");
                            mJavaDetector = null;
                        } else {
                            Log.d(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath());
                        }
                        mNativeDetector = new DetectionBasedTracker(mCascadeFile.getAbsolutePath(), 0);
                        cascadeDir.delete();
                    } catch (FileNotFoundException e) {
                        e.printStackTrace();
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                    // 开启渲染Camera
                    mCameraView.enableView();
                    break;
                default:
                    super.onManagerConnected(status);
                    break;
            }
        }
    };


    @Override
    protected void onCreate(@Nullable Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        getWindow().addFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN);
        setContentView(R.layout.activity_facedetect);
        // 绑定View
        ButterKnife.bind(this);
        mCameraView.setVisibility(CameraBridgeViewBase.VISIBLE);
        // 注册Camera渲染事件监听器
        mCameraView.setCvCameraViewListener(this);
    }


    @Override
    protected void onResume() {
        super.onResume();
        // 静态初始化OpenCV
        if (!OpenCVLoader.initDebug()) {
            Log.d(TAG, "无法加载OpenCV本地库,将使用OpenCV Manager初始化");
            OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_3_0, this, mLoaderCallback);
        } else {
            Log.d(TAG, "成功加载OpenCV本地库");
            mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS);
        }
    }


    @Override
    protected void onPause() {
        super.onPause();
        // 停止渲染Camera
        if (mCameraView != null) {
            mCameraView.disableView();
        }
    }


    @Override
    protected void onDestroy() {
        super.onDestroy();
        // 停止渲染Camera
        if (mCameraView != null) {
            mCameraView.disableView();
        }
    }


    @Override
    public void onCameraViewStarted(int width, int height) {
        // 灰度图像
        mGray = new Mat();
        // R、G、B彩色图像
        mRgba = new Mat();
    }


    @Override
    public void onCameraViewStopped() {
        mGray.release();
        mRgba.release();
    }


    @Override
    public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
        mRgba = inputFrame.rgba();
        mGray = inputFrame.gray();
        // 设置脸部大小
        if (mAbsoluteFaceSize == 0) {
            int height = mGray.rows();
            if (Math.round(height * mRelativeFaceSize) > 0) {
                mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
            }
            mNativeDetector.setMinFaceSize(mAbsoluteFaceSize);
        }
        // 获取检测到的脸部数据
        MatOfRect faces = new MatOfRect();
        if (mDetectorType == JAVA_DETECTOR) {
            if (mJavaDetector != null) {
                mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2,
                        new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
            }
        } else if (mDetectorType == NATIVE_DETECTOR) {
            if (mNativeDetector != null) {
                mNativeDetector.detect(mGray, faces);
            }
        } else {
            Log.e(TAG, "Detection method is not selected!");
        }
        // 绘制检测框
        Rect[] facesArray = faces.toArray();
        for (int i = 0; i < facesArray.length; i++) {
            Imgproc.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
        }


        Log.i(TAG, "共检测到 " + faces.toArray().length + " 张脸");
        return mRgba;
    }
}
2. activity_facedetect.xml




    
3. AndroidMnifest.xml


    

    
    
    
    

    

    
        
            
                

                
            
        

        
        
    
效果演示:



源码下载:https://github.com/jiangdongguo/OpenCV4Android(欢迎star & fork)


更新于2018-3-13

四、使用Cmake方式编译和升级到OpenCV3.4.1

       在上面工程中,有两个不好的体验:(1)每次编译so时必须手动调用ndk-build命令;(2)在编写C/C++代码时没有代码提示,也没有报错警告。我想这两种情况无论是哪个都是让人感觉很不爽的,因此,今天打算在OpenCV3.4.1版本的基础上对项目进行重构下,使用Cmake方式来进行编译。

1. 新建main/app/cpp目录。将jni目录下的"DetectionBasedTracker_jni.cpp" 和"DetectionBasedTracker_jni.h" 文件拷贝到该目录下,并将opencv-3.4.1源码..\opencv-3.4.1-android-sdk\OpenCV-android-sdk\sdk\native\jni\目录下的整个include目录拷贝到该cpp目录下,同时可以删除整个app/src/main/jni目录

OpenCV4Android开发实录(2): 使用OpenCV3.4.1库实现人脸检测_第5张图片

2. 新建main/app/jniLibs目录,将opencv-3.4.1源码中..\opencv-3.4.1-android-sdk\OpenCV-android-sdk\sdk\native\libs或staticlibs相关架构的动态库(.so)和静态库(.a)文件拷贝到该jniLibs目录下,同时删除libs、obj目录。

OpenCV4Android开发实录(2): 使用OpenCV3.4.1库实现人脸检测_第6张图片

3. 在app目录下新建脚本文件CMakeLists.txt,该文件用于编写Cmake编译运行需要的脚本。需要注意的是,你在jniLibs目录导入了哪些静态库和动态库,在CmakeList.txt编写自动编译脚本时只能导入和链接这些库:

# Sets the minimum version of CMake required to build the native
# library. You should either keep the default value or only pass a
# value of 3.4.0 or lower.

cmake_minimum_required(VERSION 3.4.1)


# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds it for you.
# Gradle automatically packages shared libraries with your APK.

set(CMAKE_VERBOSE_MAKEFILE on)
set(libs "${CMAKE_SOURCE_DIR}/src/main/jniLibs")
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include)

#--------------------------------------------------- import ---------------------------------------------------#
add_library(libopencv_java3 SHARED IMPORTED )
set_target_properties(libopencv_java3 PROPERTIES
    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_java3.so")

add_library(libopencv_core STATIC IMPORTED )
set_target_properties(libopencv_core PROPERTIES
    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_core.a")

add_library(libopencv_highgui STATIC IMPORTED )
set_target_properties(libopencv_highgui PROPERTIES
    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_highgui.a")

add_library(libopencv_imgcodecs STATIC IMPORTED )
set_target_properties(libopencv_imgcodecs PROPERTIES
    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_imgcodecs.a")

add_library(libopencv_imgproc STATIC IMPORTED )
set_target_properties(libopencv_imgproc PROPERTIES
    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_imgproc.a")

add_library(libopencv_objdetect STATIC IMPORTED )
set_target_properties(libopencv_objdetect PROPERTIES
    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_objdetect.a")

#add_library(libopencv_calib3d STATIC IMPORTED )
#set_target_properties(libopencv_calib3d PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_calib3d.a")
#
#
#add_library(libopencv_dnn STATIC IMPORTED )
#set_target_properties(libopencv_core PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_dnn.a")
#
#add_library(libopencv_features2d STATIC IMPORTED )
#set_target_properties(libopencv_features2d PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_features2d.a")
#
#add_library(libopencv_flann STATIC IMPORTED )
#set_target_properties(libopencv_flann PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_flann.a")
#
#add_library(libopencv_ml STATIC IMPORTED )
#set_target_properties(libopencv_ml PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_ml.a")
#
#add_library(libopencv_photo STATIC IMPORTED )
#set_target_properties(libopencv_photo PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_photo.a")
#
#add_library(libopencv_shape STATIC IMPORTED )
#set_target_properties(libopencv_shape PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_shape.a")
#
#add_library(libopencv_stitching STATIC IMPORTED )
#set_target_properties(libopencv_stitching PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_stitching.a")
#
#add_library(libopencv_superres STATIC IMPORTED )
#set_target_properties(libopencv_superres PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_superres.a")
#
#add_library(libopencv_video STATIC IMPORTED )
#set_target_properties(libopencv_video PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_video.a")
#
#add_library(libopencv_videoio STATIC IMPORTED )
#set_target_properties(libopencv_videoio PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_videoio.a")
#
#add_library(libopencv_videostab STATIC IMPORTED )
#set_target_properties(libopencv_videostab PROPERTIES
#    IMPORTED_LOCATION "${libs}/${ANDROID_ABI}/libopencv_videostab.a")

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=gnu++11 -fexceptions -frtti")

add_library( # Sets the name of the library.
             opencv341

             # Sets the library as a shared library.
             SHARED

             # Provides a relative path to your source file(s).
             # Associated headers in the same location as their source
             # file are automatically included.
             src/main/cpp/DetectionBasedTracker_jni.cpp)

find_library( # Sets the name of the path variable.
              log-lib

              # Specifies the name of the NDK library that
              # you want CMake to locate.
              log)

target_link_libraries(opencv341 android log
    libopencv_java3 #used for java sdk
    #17 static libs in total
    #libopencv_calib3d
    libopencv_core
    #libopencv_dnn
    #libopencv_features2d
    #libopencv_flann
    libopencv_highgui
    libopencv_imgcodecs
    libopencv_imgproc
    #libopencv_ml
    libopencv_objdetect
    #libopencv_photo
    #libopencv_shape
    #libopencv_stitching
    #libopencv_superres
    #libopencv_video
    #libopencv_videoio
    #libopencv_videostab
    ${log-lib}
    )


4. 右击选中app/src/main/cpp目录,选择"Link C++ Project with Gradle"并浏览选择本项目中的CmakeLists.txt文件,将C++环境关联到gradle

OpenCV4Android开发实录(2): 使用OpenCV3.4.1库实现人脸检测_第7张图片

5. 将工程中的openCVLibrary330 module更新到openCVLibrary341,修改app目录下的gradle.build文件

 
  
apply plugin: 'com.android.application'

android {
    compileSdkVersion 25
    defaultConfig {
        //...代码省略
        externalNativeBuild {
            cmake {
                arguments "-DANDROID_ARM_NEON=TRUE", "-DANDROID_TOOLCHAIN=clang","-DCMAKE_BUILD_TYPE=Release"
                //'-DANDROID_STL=gnustl_static'
                cppFlags "-std=c++11","-frtti", "-fexceptions"
            }
        }
        // 设置输出指定目标平台so
        ndk{
            abiFilters 'armeabi-v7a','arm64-v8a','armeabi'
        }
    }
    // ...代码省略
    externalNativeBuild {
        cmake {
            path 'CMakeLists.txt'
        }
    }
}

dependencies {
    //.. 代码省略
    implementation project(':openCVLibrary341')
}
至此,该工程重构完毕,切换到cpp文件中,码个Mat看下成效~
  
 
  

你可能感兴趣的:(【Android,开发进阶】,【OpenCV开发实录】,OpenCV核心精讲)