HDU - 3585 最大团 + 二分

题意:

给出n个点,要求在其中找到k个点,使得任意两个点的最短距离最大。

思路:

最大化最小值,很明显要二分答案判断是否可行,关键是判断可行的方案,直接对于这n个点求一个最大团,这个团满足任意两个点的距离都要大于等于当前二分的答案,看这样求出的最大团的大小是否大于等于k。

代码:

#include 
#include 
#include 
#include 
#include 
using namespace std;
const int MAXN = 55;
const int INF = 0x3f3f3f3f;

struct MaxClique {
	double g[MAXN][MAXN];
	int n, ans, dp[MAXN], st[MAXN][MAXN];

	void init(int n) {
		this->n = n;
	}

	void addedge(int u, int v, double w) {
		g[u][v] = w;
	}

	bool dfs(int sz, int num, double w) {
		if (sz == 0) {
			if (num > ans) {
				ans = num;
				return true;
			}
			return false;
		}
		for (int i = 0; i < sz; i++) {
			if (sz - i + num <= ans) return false;
			int u = st[num][i];
			if (dp[u] + num <= ans) return false;
			int cnt = 0;
			for (int j = i + 1; j < sz; j++) {
				if (g[u][st[num][j]] >= w) 
					st[num + 1][cnt++] = st[num][j];
			}
			if (dfs(cnt, num + 1, w)) return true;
		}
		return false;
	}

	int solve(double w) {
		ans = 0;
		memset(dp, 0, sizeof(dp));
		for (int i = n; i >= 1; i--) {
			int cnt = 0;
			for (int j = i + 1; j <= n; j++) {
				if (g[i][j] >= w) st[1][cnt++] = j;
			}
			dfs(cnt, 1, w);
			dp[i] = ans;
		}
		return ans;
	}

} maxclique;

double binsearch(double l, double r, int k) {
	for (int i = 1; i <= 50; i++) {
		double m = (l + r) / 2.0;
		if (maxclique.solve(m) >= k) l = m;
		else r = m;
	}
	return l;
}

struct Point {
	double x, y;
} p[MAXN];
 
double dis(Point a, Point b) {
	return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); 
}

int main() {
	int n, m;
	while (scanf("%d%d", &n, &m) == 2) {
		for (int i = 1; i <= n; i++) {
			scanf("%lf%lf", &p[i].x, &p[i].y);
		}
		maxclique.init(n);
		double l = INF, r = 0;
		for (int i = 1; i <= n; i++) {
			for (int j = i + 1; j <= n; j++) {
				double d = dis(p[i], p[j]);
				maxclique.addedge(i, j, d);
				maxclique.addedge(j, i, d);
				r = max(r, d);
				l = min(l, d);
			}
		}
		printf("%.2f\n", binsearch(l, r, m));
	}
	return 0; 
}

你可能感兴趣的:(二分/三分,dfs,最大团)