SM4.0(原名SMS4.0)是中华人民共和国政府采用的一种分组密码标准,由国家密码管理局于2012年3月21日发布。相关标准为“GM/T 0002-2012《SM4分组密码算法》(原SMS4分组密码算法)”。在商用密码体系中,SM4主要用于数据加密,其算法公开,分组长度与密钥长度均为128bit,加密算法与密钥扩展算法都采用32轮非线性迭代结构,S盒为固定的8比特输入8比特输出。SM4.0中的指令长度被提升到大于64K(即64×1024)的水平,这是SM 3.0规格(渲染指令长度允许大于512)的128倍。
这里我简要介绍一下SM4算法,详细的过程可以查看参考链接,首先我们要知道SM4是一个对称加密算法,也就是说加密和解密的密钥相同,首先我们要清楚下面几个概念
因为SM4面向的是32bit的字(word),S盒处理的是两个16进制数也就是8bit的字节,所以我们要用4个S盒来置换
轮函数F的概念如下图,以字为单位进行加密运算,称一次迭代运算为一轮变换
合成置换T就是非线性变换和线性变换的一个组合过程
了解上述一些概念之后加密解密的过程如下图
在SM4算法中,轮秘钥的产生是通过用户选择主秘钥作为基本的秘钥数据,在通过一些算法生成轮秘钥,在密钥拓展中,我们通过一些常数对用户选择的主钥进行操作,增大随机性。密钥扩展算法如下
代码出自这里
sm4.c加密解密函数的实现
// sm4.c
// Test vector 1
// plain: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
// key: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
// round key and temp computing result:
// rk[ 0] = f12186f9 X[ 0] = 27fad345
// rk[ 1] = 41662b61 X[ 1] = a18b4cb2
// rk[ 2] = 5a6ab19a X[ 2] = 11c1e22a
// rk[ 3] = 7ba92077 X[ 3] = cc13e2ee
// rk[ 4] = 367360f4 X[ 4] = f87c5bd5
// rk[ 5] = 776a0c61 X[ 5] = 33220757
// rk[ 6] = b6bb89b3 X[ 6] = 77f4c297
// rk[ 7] = 24763151 X[ 7] = 7a96f2eb
// rk[ 8] = a520307c X[ 8] = 27dac07f
// rk[ 9] = b7584dbd X[ 9] = 42dd0f19
// rk[10] = c30753ed X[10] = b8a5da02
// rk[11] = 7ee55b57 X[11] = 907127fa
// rk[12] = 6988608c X[12] = 8b952b83
// rk[13] = 30d895b7 X[13] = d42b7c59
// rk[14] = 44ba14af X[14] = 2ffc5831
// rk[15] = 104495a1 X[15] = f69e6888
// rk[16] = d120b428 X[16] = af2432c4
// rk[17] = 73b55fa3 X[17] = ed1ec85e
// rk[18] = cc874966 X[18] = 55a3ba22
// rk[19] = 92244439 X[19] = 124b18aa
// rk[20] = e89e641f X[20] = 6ae7725f
// rk[21] = 98ca015a X[21] = f4cba1f9
// rk[22] = c7159060 X[22] = 1dcdfa10
// rk[23] = 99e1fd2e X[23] = 2ff60603
// rk[24] = b79bd80c X[24] = eff24fdc
// rk[25] = 1d2115b0 X[25] = 6fe46b75
// rk[26] = 0e228aeb X[26] = 893450ad
// rk[27] = f1780c81 X[27] = 7b938f4c
// rk[28] = 428d3654 X[28] = 536e4246
// rk[29] = 62293496 X[29] = 86b3e94f
// rk[30] = 01cf72e5 X[30] = d206965e
// rk[31] = 9124a012 X[31] = 681edf34
// cypher: 68 1e df 34 d2 06 96 5e 86 b3 e9 4f 53 6e 42 46
//
// test vector 2
// the same key and plain 1000000 times coumpting
// plain: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
// key: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
// cypher: 59 52 98 c7 c6 fd 27 1f 04 02 f8 04 c3 3d 3f 66
#include "sm4.h"
#include
#include
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_ULONG_BE
#define GET_ULONG_BE(n,b,i) \
{ \
(n) = ( (unsigned long) (b)[(i) ] << 24 ) \
| ( (unsigned long) (b)[(i) + 1] << 16 ) \
| ( (unsigned long) (b)[(i) + 2] << 8 ) \
| ( (unsigned long) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_ULONG_BE
#define PUT_ULONG_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
/*
*rotate shift left marco definition
*
*/
#define SHL(x,n) (((x) & 0xFFFFFFFF) << n)
#define ROTL(x,n) (SHL((x),n) | ((x) >> (32 - n)))
#define SWAP(a,b) { unsigned long t = a; a = b; b = t; t = 0; }
/*
* Expanded SM4 S-boxes
/* Sbox table: 8bits input convert to 8 bits output*/
static const unsigned char SboxTable[16][16] =
{
{ 0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05 },
{ 0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99 },
{ 0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62 },
{ 0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6 },
{ 0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8 },
{ 0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35 },
{ 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87 },
{ 0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e },
{ 0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1 },
{ 0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3 },
{ 0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f },
{ 0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51 },
{ 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8 },
{ 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0 },
{ 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84 },
{ 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48 }
};
/* System parameter */
static const unsigned long FK[4] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc };
/* fixed parameter */
static const unsigned long CK[32] =
{
0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
};
/*
* private function:
* look up in SboxTable and get the related value.
* args: [in] inch: 0x00~0xFF (8 bits unsigned value).
*/
static unsigned char sm4Sbox(unsigned char inch)
{
unsigned char *pTable = (unsigned char *)SboxTable;
unsigned char retVal = (unsigned char)(pTable[inch]);
return retVal;
}
/*
* private F(Lt) function:
* "T algorithm" == "L algorithm" + "t algorithm".
* args: [in] a: a is a 32 bits unsigned value;
* return: c: c is calculated with line algorithm "L" and nonline algorithm "t"
*/
static unsigned long sm4Lt(unsigned long ka)
{
unsigned long bb = 0;
unsigned long c = 0;
unsigned char a[4];
unsigned char b[4];
PUT_ULONG_BE(ka, a, 0)
b[0] = sm4Sbox(a[0]);
b[1] = sm4Sbox(a[1]);
b[2] = sm4Sbox(a[2]);
b[3] = sm4Sbox(a[3]);
GET_ULONG_BE(bb, b, 0)
c = bb ^ (ROTL(bb, 2)) ^ (ROTL(bb, 10)) ^ (ROTL(bb, 18)) ^ (ROTL(bb, 24));
return c;
}
/*
* private F function:
* Calculating and getting encryption/decryption contents.
* args: [in] x0: original contents;
* args: [in] x1: original contents;
* args: [in] x2: original contents;
* args: [in] x3: original contents;
* args: [in] rk: encryption/decryption key;
* return the contents of encryption/decryption contents.
*/
static unsigned long sm4F(unsigned long x0, unsigned long x1, unsigned long x2, unsigned long x3, unsigned long rk)
{
return (x0^sm4Lt(x1^x2^x3^rk));
}
/* private function:
* Calculating round encryption key.
* args: [in] a: a is a 32 bits unsigned value;
* return: sk[i]: i{0,1,2,3,...31}.
*/
static unsigned long sm4CalciRK(unsigned long ka)
{
unsigned long bb = 0;
unsigned long rk = 0;
unsigned char a[4];
unsigned char b[4];
PUT_ULONG_BE(ka, a, 0)
b[0] = sm4Sbox(a[0]);
b[1] = sm4Sbox(a[1]);
b[2] = sm4Sbox(a[2]);
b[3] = sm4Sbox(a[3]);
GET_ULONG_BE(bb, b, 0)
rk = bb ^ (ROTL(bb, 13)) ^ (ROTL(bb, 23));
return rk;
}
static void sm4_setkey(unsigned long SK[32], unsigned char key[16])
{
unsigned long MK[4];
unsigned long k[36];
unsigned long i = 0;
GET_ULONG_BE(MK[0], key, 0);
GET_ULONG_BE(MK[1], key, 4);
GET_ULONG_BE(MK[2], key, 8);
GET_ULONG_BE(MK[3], key, 12);
k[0] = MK[0] ^ FK[0];
k[1] = MK[1] ^ FK[1];
k[2] = MK[2] ^ FK[2];
k[3] = MK[3] ^ FK[3];
for (; i<32; i++)
{
k[i + 4] = k[i] ^ (sm4CalciRK(k[i + 1] ^ k[i + 2] ^ k[i + 3] ^ CK[i]));
SK[i] = k[i + 4];
}
}
/*
* SM4 standard one round processing
*
*/
static void sm4_one_round(unsigned long sk[32],
unsigned char input[16],
unsigned char output[16])
{
unsigned long i = 0;
unsigned long ulbuf[36];
memset(ulbuf, 0, sizeof(ulbuf));
GET_ULONG_BE(ulbuf[0], input, 0)
GET_ULONG_BE(ulbuf[1], input, 4)
GET_ULONG_BE(ulbuf[2], input, 8)
GET_ULONG_BE(ulbuf[3], input, 12)
while (i<32)
{
ulbuf[i + 4] = sm4F(ulbuf[i], ulbuf[i + 1], ulbuf[i + 2], ulbuf[i + 3], sk[i]);
// #ifdef _DEBUG
// printf("rk(%02d) = 0x%08x, X(%02d) = 0x%08x \n",i,sk[i], i, ulbuf[i+4] );
// #endif
i++;
}
PUT_ULONG_BE(ulbuf[35], output, 0);
PUT_ULONG_BE(ulbuf[34], output, 4);
PUT_ULONG_BE(ulbuf[33], output, 8);
PUT_ULONG_BE(ulbuf[32], output, 12);
}
/*
* SM4 key schedule (128-bit, encryption)
*/
void sm4_setkey_enc(sm4_context *ctx, unsigned char key[16])
{
ctx->mode = SM4_ENCRYPT;
sm4_setkey(ctx->sk, key);
}
/*
* SM4 key schedule (128-bit, decryption)
*/
void sm4_setkey_dec(sm4_context *ctx, unsigned char key[16])
{
int i;
ctx->mode = SM4_ENCRYPT;
sm4_setkey(ctx->sk, key);
for (i = 0; i < 16; i++)
{
SWAP(ctx->sk[i], ctx->sk[31 - i]);
}
}
/*
* SM4-ECB block encryption/decryption
*/
void sm4_crypt_ecb(sm4_context *ctx,
int mode,
int length,
unsigned char *input,
unsigned char *output)
{
while (length > 0)
{
sm4_one_round(ctx->sk, input, output);
input += 16;
output += 16;
length -= 16;
}
}
/*
* SM4-CBC buffer encryption/decryption
*/
void sm4_crypt_cbc(sm4_context *ctx,
int mode,
int length,
unsigned char iv[16],
unsigned char *input,
unsigned char *output)
{
int i;
unsigned char temp[16];
if (mode == SM4_ENCRYPT)
{
while (length > 0)
{
for (i = 0; i < 16; i++)
output[i] = (unsigned char)(input[i] ^ iv[i]);
sm4_one_round(ctx->sk, output, output);
memcpy(iv, output, 16);
input += 16;
output += 16;
length -= 16;
}
}
else /* SM4_DECRYPT */
{
while (length > 0)
{
memcpy(temp, input, 16);
sm4_one_round(ctx->sk, input, output);
for (i = 0; i < 16; i++)
output[i] = (unsigned char)(output[i] ^ iv[i]);
memcpy(iv, temp, 16);
input += 16;
output += 16;
length -= 16;
}
}
}
sm4.h头文件,mode选择加密模式
/**
* \file sm4.h
*/
#ifndef XYSSL_SM4_H
#define XYSSL_SM4_H
#define SM4_ENCRYPT 1
#define SM4_DECRYPT 0
/**
* \brief SM4 context structure
*/
typedef struct
{
int mode; /*!< encrypt/decrypt */
unsigned long sk[32]; /*!< SM4 subkeys */
}
sm4_context;
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief SM4 key schedule (128-bit, encryption)
*
* \param ctx SM4 context to be initialized
* \param key 16-byte secret key
*/
void sm4_setkey_enc(sm4_context *ctx, unsigned char key[16]);
/**
* \brief SM4 key schedule (128-bit, decryption)
*
* \param ctx SM4 context to be initialized
* \param key 16-byte secret key
*/
void sm4_setkey_dec(sm4_context *ctx, unsigned char key[16]);
/**
* \brief SM4-ECB block encryption/decryption
* \param ctx SM4 context
* \param mode SM4_ENCRYPT or SM4_DECRYPT
* \param length length of the input data
* \param input input block
* \param output output block
*/
void sm4_crypt_ecb(sm4_context *ctx,
int mode,
int length,
unsigned char *input,
unsigned char *output);
/**
* \brief SM4-CBC buffer encryption/decryption
* \param ctx SM4 context
* \param mode SM4_ENCRYPT or SM4_DECRYPT
* \param length length of the input data
* \param iv initialization vector (updated after use)
* \param input buffer holding the input data
* \param output buffer holding the output data
*/
void sm4_crypt_cbc(sm4_context *ctx,
int mode,
int length,
unsigned char iv[16],
unsigned char *input,
unsigned char *output);
#ifdef __cplusplus
}
#endif
#endif /* sm4.h */
测试代码
// test.c
#include
#include
#include "sm4.h"
int main()
{
unsigned char key[16] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 };
unsigned char input[16] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 };
unsigned char output[16];
sm4_context ctx;
unsigned long i;
//encrypt standard testing vector
sm4_setkey_enc(&ctx, key);
sm4_crypt_ecb(&ctx, 1, 16, input, output);
for (i = 0; i<16; i++)
printf("%02x ", output[i]);
printf("\n");
//解密测试
sm4_setkey_dec(&ctx, key);
sm4_crypt_ecb(&ctx, 0, 16, output, output);
for (i = 0; i<16; i++)
printf("%02x ", output[i]);
printf("\n");
//decrypt 1M times testing vector based on standards.
i = 0;
sm4_setkey_enc(&ctx, key);
while (i<1000000)
{
sm4_crypt_ecb(&ctx, 1, 16, input, input);
i++;
}
for (i = 0; i<16; i++)
printf("%02x ", input[i]);
printf("\n");
return 0;
}
运行结果如下
C:\Users\thunder>"D:\AlgorithmTest.exe"
68 1e df 34 d2 06 96 5e 86 b3 e9 4f 53 6e 42 46
01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
59 52 98 c7 c6 fd 27 1f 04 02 f8 04 c3 3d 3f 66
pysm4是国密SM4算法的Python实现,这里下载
>>> from pysm4 import encrypt, decrypt
# 明文
>>> clear_num = 0x0123456789abcdeffedcba9876543210
# 密钥
>>> mk = 0x0123456789abcdeffedcba9876543210
# 加密
>>> cipher_num = encrypt(clear_num, mk)
>>> hex(cipher_num)[2:].replace('L', '')
'681edf34d206965e86b3e94f536e4246'
# 解密
>>> clear_num == decrypt(cipher_num, mk)
True
>>>
CTF逆向可以通过判断S盒的值来猜测SM4算法,通过S盒生成4个8位的字符,我们将上面实现代码放入IDA中查看,我们可以通过输入明文密钥的格式来猜测SM4算法
__int64 main()
{
int v0; // edx
__int64 v1; // ST0C_8
unsigned int i; // [esp+D0h] [ebp-E0h]
sm4_context ctx; // [esp+DCh] [ebp-D4h]
char output[16]; // [esp+168h] [ebp-48h]
char input[16]; // [esp+180h] [ebp-30h]
char key[16]; // [esp+198h] [ebp-18h]
key[0] = 1;
key[1] = 0x23;
key[2] = 0x45;
key[3] = 0x67;
key[4] = 0x89u;
key[5] = 0xABu;
key[6] = 0xCDu;
key[7] = 0xEFu;
key[8] = 0xFEu;
key[9] = 0xDCu;
key[10] = 0xBAu;
key[11] = 0x98u;
key[12] = 0x76;
key[13] = 0x54;
key[14] = 0x32;
key[15] = 0x10;
input[0] = 1;
input[1] = 0x23;
input[2] = 0x45;
input[3] = 0x67;
input[4] = 0x89u;
input[5] = 0xABu;
input[6] = 0xCDu;
input[7] = 0xEFu;
input[8] = 0xFEu;
input[9] = 0xDCu;
input[10] = 0xBAu;
input[11] = 0x98u;
input[12] = 0x76;
input[13] = 0x54;
input[14] = 0x32;
input[15] = 0x10;
j__sm4_setkey_enc(&ctx, key);
j__sm4_crypt_ecb(&ctx, 1, 16, input, output);
for ( i = 0; i < 0x10; ++i )
_printf("%02x ", (unsigned __int8)output[i]);
_printf("\n");
j__sm4_setkey_dec(&ctx, key);
j__sm4_crypt_ecb(&ctx, 0, 16, output, output);
for ( i = 0; i < 0x10; ++i )
_printf("%02x ", (unsigned __int8)output[i]);
_printf("\n");
i = 0;
j__sm4_setkey_enc(&ctx, key);
while ( i < 0xF4240 )
{
j__sm4_crypt_ecb(&ctx, 1, 16, input, input);
++i;
}
for ( i = 0; i < 0x10; ++i )
_printf("%02x ", (unsigned __int8)input[i]);
_printf("\n");
HIDWORD(v1) = v0;
LODWORD(v1) = 0;
return v1;
}
算法中的T变换观察返回值也有很明显的特征
unsigned int __cdecl sm4F(unsigned int x0, unsigned int x1, unsigned int x2, unsigned int x3, unsigned int rk)
{
return x0 ^ (unsigned __int64)sm4Lt(rk ^ x3 ^ x2 ^ x1); //返回多组异或
}
/************************************************************************************************/
__int64 __cdecl sm4Lt(unsigned int ka)
{
unsigned __int8 b; // STD8_1
unsigned __int8 b_1; // STD9_1
unsigned __int8 b_2; // STDA_1
unsigned __int8 v4; // al
unsigned int bb; // STFC_4
__int64 v6; // ST00_8
b = sm4Sbox(SHIBYTE(ka));
b_1 = sm4Sbox(SBYTE2(ka));
b_2 = sm4Sbox(SBYTE1(ka));
v4 = sm4Sbox(ka);
bb = v4 | (b_2 << 8) | (b_1 << 16) | (b << 24); // 分4组每组8位计算
HIDWORD(v6) = (bb >> 8) | (bb << 24);
LODWORD(v6) = HIDWORD(v6) ^ ((bb >> 14) | (bb << 18)) ^ ((bb >> 22) | (bb << 10)) ^ bb ^ ((bb >> 30) | 4 * bb);
return v6;
}
2019ciscn-bbvvmm
下面的代码和上面的对比可以很容易的猜到SM4
unsigned __int64 __fastcall sub_400EE2(__int64 a1, __int64 a2, __int64 a3, __int64 a4, __int64 a5)
{
return a1 ^ sub_400D87(a5 ^ a4 ^ a3 ^ a2);
}
/************************************************************************************************/
__int64 __cdecl sm4Lt(unsigned int ka)
{
unsigned __int8 b; // STD8_1
unsigned __int8 b_1; // STD9_1
unsigned __int8 b_2; // STDA_1
unsigned __int8 v4; // al
unsigned int bb; // STFC_4
__int64 v6; // ST00_8
b = sm4Sbox(SHIBYTE(ka));
b_1 = sm4Sbox(SBYTE2(ka));
b_2 = sm4Sbox(SBYTE1(ka));
v4 = sm4Sbox(ka);
bb = v4 | (b_2 << 8) | (b_1 << 16) | (b << 24);
HIDWORD(v6) = (bb >> 8) | (bb << 24);
LODWORD(v6) = HIDWORD(v6) ^ ((bb >> 14) | (bb << 18)) ^ ((bb >> 22) | (bb << 10)) ^ bb ^ ((bb >> 30) | 4 * bb);
return v6;
}
参考链接:
https://neuqzxy.github.io/2017/06/15/欣仔带你零基础入门SM4加密算法/
https://baike.baidu.com/item/SM4.0/3901780?fr=aladdin
https://max.book118.com/html/2018/1023/8017013004001130.shtm
https://blog.csdn.net/cg129054036/article/details/83012721