流体传热方程【Heat Transfer Equation】

流体传热方程

Equation of Energy in terms of qq q q

控制方程表达通式:

ρC^pDTDt=qqlnρlnTDpDtττ:vv ρ C ^ p D T D t = − ∇ ⋅ q q − ∂ l n ρ ∂ l n T D p D t − τ τ : ∇ v v


1.直角坐标系( x,y,z x , y , z )

直角坐标系Cartesian coordinates (  x,y,z   x,y,z  ): NO.
ρC^p(Tt+vxTx+vyTy+vzTz)=[qxx+qyy+qzz](lnρlnT)pDpDtττ:vv ρ C ^ p ( ∂ T ∂ t + v x ∂ T ∂ x + v y ∂ T ∂ y + v z ∂ T ∂ z ) = − [ ∂ q x ∂ x + ∂ q y ∂ y + ∂ q z ∂ z ] − ( ∂ l n ρ ∂ l n T ) p D p D t − τ τ : ∇ v v 1-1

2.圆柱坐标系( r,θ,z r , θ , z )

圆柱坐标系Cylindrical coordinates coordinates ( r, θ, z  r,  θ , z  ): NO.
ρC^p(Tt+vrTr+vθrTθ+vzTz)=[1rr(rqr)+1rqθθ+qzz](lnρlnT)pDpDtττ:vv ρ C ^ p ( ∂ T ∂ t + v r ∂ T ∂ r + v θ r ∂ T ∂ θ + v z ∂ T ∂ z ) = − [ 1 r ∂ ∂ r ( r q r ) + 1 r ∂ q θ ∂ θ + ∂ q z ∂ z ] − ( ∂ l n ρ ∂ l n T ) p D p D t − τ τ : ∇ v v 2-1

3.球坐标系( r,θ,ϕ r , θ , ϕ )

球坐标系Spherical coordinates( r, θϕ  r,  θ ,  ϕ   ): NO.
ρC^p(Tt+vrTr+vθrTθ+vϕrsinθTϕ)=[1r2r(r2qr)+1rsinθθ(qθsinθ)+1rsinθqϕϕ](lnρlnT)pDpDtττ:vv ρ C ^ p ( ∂ T ∂ t + v r ∂ T ∂ r + v θ r ∂ T ∂ θ + v ϕ r s i n θ ∂ T ∂ ϕ ) = − [ 1 r 2 ∂ ∂ r ( r 2 q r ) + 1 r s i n θ ∂ ∂ θ ( q θ s i n θ ) + 1 r s i n θ ∂ q ϕ ∂ ϕ ] − ( ∂ l n ρ ∂ l n T ) p D p D t − τ τ : ∇ v v 3-1

注:黏度耗散项 ττ:vv ( − τ τ : ∇ v v ) 很小,可以被忽略,除非速度的梯度非常大。另外对于恒定密度的流体 lnρlnT ∂ l n ρ ∂ l n T 项等于零。


参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.

你可能感兴趣的:(传热学【Heat,Transfer】,流体力学【Fluid,Mechanics】)