Keras:评价函数

评价函数的用法

 

目录

评价函数的用法

可使用的评价函数

binary_accuracy

categorical_accuracy

sparse_categorical_accuracy

top_k_categorical_accuracy

sparse_top_k_categorical_accuracy

自定义评价函数


 

评价函数用于评估当前训练模型的性能。当模型编译后(compile),评价函数应该作为 metrics 的参数来输入。

model.compile(loss='mean_squared_error',

optimizer='sgd',

metrics=['mae', 'acc'])

 

from keras import metrics

model.compile(loss='mean_squared_error',

optimizer='sgd',

metrics=[metrics.mae, metrics.categorical_accuracy])

评价函数和 损失函数 相似,只不过评价函数的结果不会用于训练过程中。

我们可以传递已有的评价函数名称,或者传递一个自定义的 Theano/TensorFlow 函数来使用(查阅自定义评价函数)。

参数

y_true: 真实标签,Theano/Tensorflow 张量。

y_pred: 预测值。和 y_true 相同尺寸的 Theano/TensorFlow 张量。

返回值

返回一个表示全部数据点平均值的张量。


可使用的评价函数

binary_accuracy

binary_accuracy(y_true, y_pred)


categorical_accuracy

categorical_accuracy(y_true, y_pred)


sparse_categorical_accuracy

sparse_categorical_accuracy(y_true, y_pred)


top_k_categorical_accuracy

top_k_categorical_accuracy(y_true, y_pred, k=5)


sparse_top_k_categorical_accuracy

sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)


自定义评价函数

自定义评价函数应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。

import keras.backend as K

def mean_pred(y_true, y_pred):

return K.mean(y_pred)

 

model.compile(optimizer='rmsprop',

loss='binary_crossentropy',

metrics=['accuracy', mean_pred])

 

你可能感兴趣的:(Python,Keras,机器学习)