网站日志流量系统----【数据采集模块、数据预处理模块】

1. 模块开发----数据采集

1.1 需求

在网站 web 流量日志分析这种场景中,对数据采集部分的可靠性、容错能力要求通常不会非常严苛,因此使用通用的 flume 日志采集框架完全可以满足需求。

1. 2 Flume 日志采集系统

1.2.1 Flume 采集

Flume 采集系统的搭建相对简单:

1、在服务器上部署 agent 节点,修改配置文件
2、启动 agent 节点,将采集到的数据汇聚到指定的 HDFS 目录中

针对 nginx 日志生成场景,如果通过 flume(1.6)收集,无论是 Spooling Directory
Source 和 Exec Source 均不能满足动态实时收集的需求,在当前 flume1.7 稳定版本中,提供了一个非常好用的 TaildirSource,使用这个 source,可以监控一个目录,并且使用正则表达式匹配该目录中的文件名进行实时收集。

核心配置如下 :

a1.sources = r1
a1.sources.r1.type = TAILDIR
a1.sources.r1.channels = c1
a1.sources.r1.positionFile = /var/log/flume/taildir_position.json
a1.sources.r1.filegroups = f1 f2
a1.sources.r1.filegroups.f1 = /var/log/test1/example.log
a1.sources.r1.filegroups.f2 = /var/log/test2/.*log.*

filegroups:指定 filegroups,可以有多个,以空格分隔;(TailSource 可以同时监控
tail 多个目录中的文件)
positionFile:配置检查点文件的路径,检查点文件会以 json 格式保存已经 tail 文件的位置,解决了断点不能续传的缺陷。

filegroups.:配置每个 filegroup 的文件绝对路径,文件名可以用正则表达式匹配

1.2.2 数据内容样例
58.215.204.118 - - [18/Sep/2013:06:51:35 +0000] "GET /wp-includes/js/jquery/jquery.js?ver=1.10.2 HTTP/1.1"
304 0 "http://blog.fens.me/nodejs-socketio-chat/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101
Firefox/23.0"

字段解析:
1、访客 ip 地址: 58.215.204.118
2、访客用户信息: - -
3、请求时间:[18/Sep/2013:06:51:35 +0000]
4、请求方式:GET
5、请求的 url:/wp-includes/js/jquery/jquery.js?ver=1.10.2
6、请求所用协议:HTTP/1.1
7、响应码:304
8、返回的数据流量:0
9、访客的来源 url:http://blog.fens.me/nodejs-socketio-chat/
10、访客所用浏览器:Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101
Firefox/23.0

网站日志流量系统----【数据采集模块、数据预处理模块】_第1张图片


2. 模块开发----数据预处理

2.1 主要目的

过滤“不合规”数据,清洗无意义的数据
格式转换和规整
根据后续的统计需求,过滤分离出各种不同主题(不同栏目 path)的基础数据。
网站日志流量系统----【数据采集模块、数据预处理模块】_第2张图片

2.2 实现方式

网站日志流量系统----【数据采集模块、数据预处理模块】_第3张图片
网站日志流量系统----【数据采集模块、数据预处理模块】_第4张图片

首先编写一个WebLogBean用于存储javabean类型的数据

package cn.itcast.bigdata.weblog.mrbean;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

/**
 * 对接外部数据的层,表结构定义最好跟外部数据源保持一致
 * 术语: 贴源表
 * @author
 *
 */
public class WebLogBean implements Writable {

	private boolean valid = true;// 判断数据是否合法
	private String remote_addr;// 记录客户端的ip地址
	private String remote_user;// 记录客户端用户名称,忽略属性"-"
	private String time_local;// 记录访问时间与时区
	private String request;// 记录请求的url与http协议
	private String status;// 记录请求状态;成功是200
	private String body_bytes_sent;// 记录发送给客户端文件主体内容大小
	private String http_referer;// 用来记录从那个页面链接访问过来的
	private String http_user_agent;// 记录客户浏览器的相关信息

	
	public void set(boolean valid,String remote_addr, String remote_user, String time_local, String request, String status, String body_bytes_sent, String http_referer, String http_user_agent) {
		this.valid = valid;
		this.remote_addr = remote_addr;
		this.remote_user = remote_user;
		this.time_local = time_local;
		this.request = request;
		this.status = status;
		this.body_bytes_sent = body_bytes_sent;
		this.http_referer = http_referer;
		this.http_user_agent = http_user_agent;
	}

	public String getRemote_addr() {
		return remote_addr;
	}

	public void setRemote_addr(String remote_addr) {
		this.remote_addr = remote_addr;
	}

	public String getRemote_user() {
		return remote_user;
	}

	public void setRemote_user(String remote_user) {
		this.remote_user = remote_user;
	}

	public String getTime_local() {
		return this.time_local;
	}

	public void setTime_local(String time_local) {
		this.time_local = time_local;
	}

	public String getRequest() {
		return request;
	}

	public void setRequest(String request) {
		this.request = request;
	}

	public String getStatus() {
		return status;
	}

	public void setStatus(String status) {
		this.status = status;
	}

	public String getBody_bytes_sent() {
		return body_bytes_sent;
	}

	public void setBody_bytes_sent(String body_bytes_sent) {
		this.body_bytes_sent = body_bytes_sent;
	}

	public String getHttp_referer() {
		return http_referer;
	}

	public void setHttp_referer(String http_referer) {
		this.http_referer = http_referer;
	}

	public String getHttp_user_agent() {
		return http_user_agent;
	}

	public void setHttp_user_agent(String http_user_agent) {
		this.http_user_agent = http_user_agent;
	}

	public boolean isValid() {
		return valid;
	}

	public void setValid(boolean valid) {
		this.valid = valid;
	}

	@Override
	public String toString() {
		StringBuilder sb = new StringBuilder();
		sb.append(this.valid);
		sb.append("\001").append(this.getRemote_addr());
		sb.append("\001").append(this.getRemote_user());
		sb.append("\001").append(this.getTime_local());
		sb.append("\001").append(this.getRequest());
		sb.append("\001").append(this.getStatus());
		sb.append("\001").append(this.getBody_bytes_sent());
		sb.append("\001").append(this.getHttp_referer());
		sb.append("\001").append(this.getHttp_user_agent());
		return sb.toString();
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		this.valid = in.readBoolean();
		this.remote_addr = in.readUTF();
		this.remote_user = in.readUTF();
		this.time_local = in.readUTF();
		this.request = in.readUTF();
		this.status = in.readUTF();
		this.body_bytes_sent = in.readUTF();
		this.http_referer = in.readUTF();
		this.http_user_agent = in.readUTF();

	}

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeBoolean(this.valid);
		out.writeUTF(null==remote_addr?"":remote_addr);
		out.writeUTF(null==remote_user?"":remote_user);
		out.writeUTF(null==time_local?"":time_local);
		out.writeUTF(null==request?"":request);
		out.writeUTF(null==status?"":status);
		out.writeUTF(null==body_bytes_sent?"":body_bytes_sent);
		out.writeUTF(null==http_referer?"":http_referer);
		out.writeUTF(null==http_user_agent?"":http_user_agent);

	}

}

由于初步处理数据 , 是为了获得可用的且将日期 , 分隔符进行初步修改 , 因此不需要进行聚合工作 , 即不需要reduce

编写map代码

import java.io.IOException;
import java.util.HashSet;
import java.util.Set;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * 处理原始日志,过滤出真实pv请求 转换时间格式 对缺失字段填充默认值 对记录标记valid和invalid
 * 
 */

public class WeblogPreProcess {

	static class WeblogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
		// 用来存储网站url分类数据
		Set<String> pages = new HashSet<String>();
		Text k = new Text();
		NullWritable v = NullWritable.get();

		/**
		 * 从外部配置文件中加载网站的有用url分类数据 存储到maptask的内存中,用来对日志数据进行过滤
		 */
		@Override
		protected void setup(Context context) throws IOException, InterruptedException {
			pages.add("/about");
			pages.add("/black-ip-list/");
			pages.add("/cassandra-clustor/");
			pages.add("/finance-rhive-repurchase/");
			pages.add("/hadoop-family-roadmap/");
			pages.add("/hadoop-hive-intro/");
			pages.add("/hadoop-zookeeper-intro/");
			pages.add("/hadoop-mahout-roadmap/");

		}

		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

			String line = value.toString();
			WebLogBean webLogBean = WebLogParser.parser(line);
			if (webLogBean != null) {
				// 过滤js/图片/css等静态资源
				WebLogParser.filtStaticResource(webLogBean, pages);
				/* if (!webLogBean.isValid()) return; */
				k.set(webLogBean.toString());
				context.write(k, v);
			}
		}

	}

	public static void main(String[] args) throws Exception {

		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		job.setJarByClass(WeblogPreProcess.class);

		job.setMapperClass(WeblogPreProcessMapper.class);

		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(NullWritable.class);

//		 FileInputFormat.setInputPaths(job, new Path(args[0]));
//		 FileOutputFormat.setOutputPath(job, new Path(args[1]));
		FileInputFormat.setInputPaths(job, new Path("d:/weblog/input"));
		FileOutputFormat.setOutputPath(job, new Path("d:/weblog/output"));

		job.setNumReduceTasks(0);

		boolean res = job.waitForCompletion(true);
		System.exit(res?0:1);

	}

}

首先进行对数据的初步分析 , 将有用的url筛选出来 , 因此重写了Writable的初始化方法即setup方法 , 用于对日志文件进行过滤

其次 , 我们在对数据进行遍历操作时 , 我们编写了一个WebLogParser类用于处理日志数据 , 里面对日期的格式进行了转换 , 并且对js/图片/css等静态资源进行了过滤

最终实现文件的读取转换 , 即获得了初步数据处理

WebLogParser方法代码如下 :

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Locale;
import java.util.Set;

public class WebLogParser {

	public static SimpleDateFormat df1 = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss", Locale.US);
	public static SimpleDateFormat df2 = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.US);

	public static WebLogBean parser(String line) {
		WebLogBean webLogBean = new WebLogBean();
		String[] arr = line.split(" ");
		if (arr.length > 11) {
			webLogBean.setRemote_addr(arr[0]);
			webLogBean.setRemote_user(arr[1]);
			String time_local = formatDate(arr[3].substring(1));
			if(null==time_local || "".equals(time_local)) time_local="-invalid_time-";
			webLogBean.setTime_local(time_local);
			webLogBean.setRequest(arr[6]);
			webLogBean.setStatus(arr[8]);
			webLogBean.setBody_bytes_sent(arr[9]);
			webLogBean.setHttp_referer(arr[10]);

			//如果useragent元素较多,拼接useragent
			if (arr.length > 12) {
				StringBuilder sb = new StringBuilder();
				for(int i=11;i<arr.length;i++){
					sb.append(arr[i]);
				}
				webLogBean.setHttp_user_agent(sb.toString());
			} else {
				webLogBean.setHttp_user_agent(arr[11]);
			}

			if (Integer.parseInt(webLogBean.getStatus()) >= 400) {// 大于400,HTTP错误
				webLogBean.setValid(false);
			}
			
			if("-invalid_time-".equals(webLogBean.getTime_local())){
				webLogBean.setValid(false);
			}
		} else {
			webLogBean=null;
		}

		return webLogBean;
	}

	public static void filtStaticResource(WebLogBean bean, Set<String> pages) {
		if (!pages.contains(bean.getRequest())) {
			bean.setValid(false);
		}
	}
        //格式化时间方法
	public static String formatDate(String time_local) {
		try {
			return df2.format(df1.parse(time_local));
		} catch (ParseException e) {
			return null;
		}

	}
}

获得如下图的数据格式

网站日志流量系统----【数据采集模块、数据预处理模块】_第5张图片

2.3 点击流模型数据梳理

网站日志流量系统----【数据采集模块、数据预处理模块】_第6张图片

首先对清洗后的原始数据进行maptask操作 , 输出结果格式为类型 ;

reducetask对其进行处理 , 对对象集合根据某一属性进行排序 , 此时运用到Collection.sort(数据集合) , 重写排序规则 , 将获取的参数用pageViewBean封装处理 , 获取到对应的session , ip , 地址 , 时间 , 访问页面 , url , 停留时间 , 第几步等参数信息

遍历数据集合 , 判断两次时间间隔是否大于30分钟 , 若大于 , 则属于另一个会话 , 若小于 , 则属于同一个会话

我们将reducetask输出的数据类型定义为

首先封装好PageViewBean.java

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;

public class PageViewsBean implements Writable {

	private String session;
	private String remote_addr;
	private String timestr;
	private String request;
	private int step;
	private String staylong;
	private String referal;
	private String useragent;
	private String bytes_send;
	private String status;

	public void set(String session, String remote_addr, String useragent, String timestr, String request, int step, String staylong, String referal, String bytes_send, String status) {
		this.session = session;
		this.remote_addr = remote_addr;
		this.useragent = useragent;
		this.timestr = timestr;
		this.request = request;
		this.step = step;
		this.staylong = staylong;
		this.referal = referal;
		this.bytes_send = bytes_send;
		this.status = status;
	}

	public String getSession() {
		return session;
	}

	public void setSession(String session) {
		this.session = session;
	}

	public String getRemote_addr() {
		return remote_addr;
	}

	public void setRemote_addr(String remote_addr) {
		this.remote_addr = remote_addr;
	}

	public String getTimestr() {
		return timestr;
	}

	public void setTimestr(String timestr) {
		this.timestr = timestr;
	}

	public String getRequest() {
		return request;
	}

	public void setRequest(String request) {
		this.request = request;
	}

	public int getStep() {
		return step;
	}

	public void setStep(int step) {
		this.step = step;
	}

	public String getStaylong() {
		return staylong;
	}

	public void setStaylong(String staylong) {
		this.staylong = staylong;
	}

	public String getReferal() {
		return referal;
	}

	public void setReferal(String referal) {
		this.referal = referal;
	}

	public String getUseragent() {
		return useragent;
	}

	public void setUseragent(String useragent) {
		this.useragent = useragent;
	}

	public String getBytes_send() {
		return bytes_send;
	}

	public void setBytes_send(String bytes_send) {
		this.bytes_send = bytes_send;
	}

	public String getStatus() {
		return status;
	}

	public void setStatus(String status) {
		this.status = status;
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		this.session = in.readUTF();
		this.remote_addr = in.readUTF();
		this.timestr = in.readUTF();
		this.request = in.readUTF();
		this.step = in.readInt();
		this.staylong = in.readUTF();
		this.referal = in.readUTF();
		this.useragent = in.readUTF();
		this.bytes_send = in.readUTF();
		this.status = in.readUTF();

	}

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeUTF(session);
		out.writeUTF(remote_addr);
		out.writeUTF(timestr);
		out.writeUTF(request);
		out.writeInt(step);
		out.writeUTF(staylong);
		out.writeUTF(referal);
		out.writeUTF(useragent);
		out.writeUTF(bytes_send);
		out.writeUTF(status);

	}

}

编写点击流的mr程序ClickStreamPageView.java

import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Date;
import java.util.Locale;
import java.util.UUID;

import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;



/**
 * 
 * 将清洗之后的日志梳理出点击流pageviews模型数据
 * 
 * 输入数据是清洗过后的结果数据
 * 
 * 区分出每一次会话,给每一次visit(session)增加了session-id(随机uuid)
 * 梳理出每一次会话中所访问的每个页面(请求时间,url,停留时长,以及该页面在这次session中的序号)
 * 保留referral_url,body_bytes_send,useragent
 * 
 * 
 * @author
 * 
 */
public class ClickStreamPageView {

	static class ClickStreamMapper extends Mapper<LongWritable, Text, Text, WebLogBean> {

		Text k = new Text();
		WebLogBean v = new WebLogBean();

		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

			String line = value.toString();

			String[] fields = line.split("\001");
			if (fields.length < 9) return;
			//将切分出来的各字段set到weblogbean中
			v.set("true".equals(fields[0]) ? true : false, fields[1], fields[2], fields[3], fields[4], fields[5], fields[6], fields[7], fields[8]);
			//只有有效记录才进入后续处理
			if (v.isValid()) {
			        //此处用ip地址来标识用户
				k.set(v.getRemote_addr());
				context.write(k, v);
			}
		}
	}

	static class ClickStreamReducer extends Reducer<Text, WebLogBean, NullWritable, Text> {

		Text v = new Text();

		@Override
		protected void reduce(Text key, Iterable<WebLogBean> values, Context context) throws IOException, InterruptedException {
			ArrayList<WebLogBean> beans = new ArrayList<WebLogBean>();

			// 先将一个用户的所有访问记录中的时间拿出来排序
			try {
				for (WebLogBean bean : values) {
					WebLogBean webLogBean = new WebLogBean();
					try {
						BeanUtils.copyProperties(webLogBean, bean);
					} catch(Exception e) {
						e.printStackTrace();
					}
					beans.add(webLogBean);
				}
				//将bean按时间先后顺序排序
				Collections.sort(beans, new Comparator<WebLogBean>() {

					@Override
					public int compare(WebLogBean o1, WebLogBean o2) {
						try {
							Date d1 = toDate(o1.getTime_local());
							Date d2 = toDate(o2.getTime_local());
							if (d1 == null || d2 == null)
								return 0;
							return d1.compareTo(d2);
						} catch (Exception e) {
							e.printStackTrace();
							return 0;
						}
					}

				});

				/**
				 * 以下逻辑为:从有序bean中分辨出各次visit,并对一次visit中所访问的page按顺序标号step
				 * 核心思想:
				 * 就是比较相邻两条记录中的时间差,如果时间差<30分钟,则该两条记录属于同一个session
				 * 否则,就属于不同的session
				 * 
				 */
				
				int step = 1;
				String session = UUID.randomUUID().toString();
				for (int i = 0; i < beans.size(); i++) {
					WebLogBean bean = beans.get(i);
					// 如果仅有1条数据,则直接输出
					if (1 == beans.size()) {
						
						// 设置默认停留时长为60s
						v.set(session+"\001"+key.toString()+"\001"+bean.getRemote_user() + "\001" + bean.getTime_local() + "\001" + bean.getRequest() + "\001" + step + "\001" + (60) + "\001" + bean.getHttp_referer() + "\001" + bean.getHttp_user_agent() + "\001" + bean.getBody_bytes_sent() + "\001"
								+ bean.getStatus());
						context.write(NullWritable.get(), v);
						session = UUID.randomUUID().toString();
						break;
					}

					// 如果不止1条数据,则将第一条跳过不输出,遍历第二条时再输出
					if (i == 0) {
						continue;
					}

					// 求近两次时间差
					long timeDiff = timeDiff(toDate(bean.getTime_local()), toDate(beans.get(i - 1).getTime_local()));
					// 如果本次-上次时间差<30分钟,则输出前一次的页面访问信息
					
					if (timeDiff < 30 * 60 * 1000) {
						
						v.set(session+"\001"+key.toString()+"\001"+beans.get(i - 1).getRemote_user() + "\001" + beans.get(i - 1).getTime_local() + "\001" + beans.get(i - 1).getRequest() + "\001" + step + "\001" + (timeDiff / 1000) + "\001" + beans.get(i - 1).getHttp_referer() + "\001"
								+ beans.get(i - 1).getHttp_user_agent() + "\001" + beans.get(i - 1).getBody_bytes_sent() + "\001" + beans.get(i - 1).getStatus());
						context.write(NullWritable.get(), v);
						step++;
					} else {
						
						// 如果本次-上次时间差>30分钟,则输出前一次的页面访问信息且将step重置,以分隔为新的visit
						v.set(session+"\001"+key.toString()+"\001"+beans.get(i - 1).getRemote_user() + "\001" + beans.get(i - 1).getTime_local() + "\001" + beans.get(i - 1).getRequest() + "\001" + (step) + "\001" + (60) + "\001" + beans.get(i - 1).getHttp_referer() + "\001"
								+ beans.get(i - 1).getHttp_user_agent() + "\001" + beans.get(i - 1).getBody_bytes_sent() + "\001" + beans.get(i - 1).getStatus());
						context.write(NullWritable.get(), v);
						// 输出完上一条之后,重置step编号
						step = 1;
						session = UUID.randomUUID().toString();
					}

					// 如果此次遍历的是最后一条,则将本条直接输出
					if (i == beans.size() - 1) {
						// 设置默认停留市场为60s
						v.set(session+"\001"+key.toString()+"\001"+bean.getRemote_user() + "\001" + bean.getTime_local() + "\001" + bean.getRequest() + "\001" + step + "\001" + (60) + "\001" + bean.getHttp_referer() + "\001" + bean.getHttp_user_agent() + "\001" + bean.getBody_bytes_sent() + "\001" + bean.getStatus());
						context.write(NullWritable.get(), v);
					}
				}

			} catch (ParseException e) {
				e.printStackTrace();

			}

		}

		private String toStr(Date date) {
			SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.US);
			return df.format(date);
		}

		private Date toDate(String timeStr) throws ParseException {
			SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss", Locale.US);
			return df.parse(timeStr);
		}

		private long timeDiff(String time1, String time2) throws ParseException {
			Date d1 = toDate(time1);
			Date d2 = toDate(time2);
			return d1.getTime() - d2.getTime();

		}

		private long timeDiff(Date time1, Date time2) throws ParseException {

			return time1.getTime() - time2.getTime();

		}

	}

	public static void main(String[] args) throws Exception {

		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		job.setJarByClass(ClickStreamPageView.class);

		job.setMapperClass(ClickStreamMapper.class);
		job.setReducerClass(ClickStreamReducer.class);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(WebLogBean.class);

		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);

//		FileInputFormat.setInputPaths(job, new Path(args[0]));
//		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		FileInputFormat.setInputPaths(job, new Path("d:/weblog/output"));
		FileOutputFormat.setOutputPath(job, new Path("d:/weblog/pageviews"));

		job.waitForCompletion(true);

	}

}

获得如下格式的数据 , 获取的数据格式为(sessionid,ip, 时间,url,步号,停留时间,访问,访问次数,状态码)

网站日志流量系统----【数据采集模块、数据预处理模块】_第7张图片

2.4 点击流模型visit信息表

网站日志流量系统----【数据采集模块、数据预处理模块】_第8张图片

首先获取pageViews的数据 , 经过map程序后到达visit的reducetask , 同样的将输出的数据封装成VisitBean输出

VisitBean数据格式(session , remote_addr , inTime , outTime , inPage , outPage , referal , pageVisits)

封装VisitBean.java

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;

public class VisitBean implements Writable {

	private String session;
	private String remote_addr;
	private String inTime;
	private String outTime;
	private String inPage;
	private String outPage;
	private String referal;
	private int pageVisits;

	public void set(String session, String remote_addr, String inTime, String outTime, String inPage, String outPage, String referal, int pageVisits) {
		this.session = session;
		this.remote_addr = remote_addr;
		this.inTime = inTime;
		this.outTime = outTime;
		this.inPage = inPage;
		this.outPage = outPage;
		this.referal = referal;
		this.pageVisits = pageVisits;
	}

	public String getSession() {
		return session;
	}

	public void setSession(String session) {
		this.session = session;
	}

	public String getRemote_addr() {
		return remote_addr;
	}

	public void setRemote_addr(String remote_addr) {
		this.remote_addr = remote_addr;
	}

	public String getInTime() {
		return inTime;
	}

	public void setInTime(String inTime) {
		this.inTime = inTime;
	}

	public String getOutTime() {
		return outTime;
	}

	public void setOutTime(String outTime) {
		this.outTime = outTime;
	}

	public String getInPage() {
		return inPage;
	}

	public void setInPage(String inPage) {
		this.inPage = inPage;
	}

	public String getOutPage() {
		return outPage;
	}

	public void setOutPage(String outPage) {
		this.outPage = outPage;
	}

	public String getReferal() {
		return referal;
	}

	public void setReferal(String referal) {
		this.referal = referal;
	}

	public int getPageVisits() {
		return pageVisits;
	}

	public void setPageVisits(int pageVisits) {
		this.pageVisits = pageVisits;
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		this.session = in.readUTF();
		this.remote_addr = in.readUTF();
		this.inTime = in.readUTF();
		this.outTime = in.readUTF();
		this.inPage = in.readUTF();
		this.outPage = in.readUTF();
		this.referal = in.readUTF();
		this.pageVisits = in.readInt();

	}

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeUTF(session);
		out.writeUTF(remote_addr);
		out.writeUTF(inTime);
		out.writeUTF(outTime);
		out.writeUTF(inPage);
		out.writeUTF(outPage);
		out.writeUTF(referal);
		out.writeInt(pageVisits);

	}

	@Override
	public String toString() {
		return session + "\001" + remote_addr + "\001" + inTime + "\001" + outTime + "\001" + inPage + "\001" + outPage + "\001" + referal + "\001" + pageVisits;
	}
}

编写Visit的mr程序ClickStreamVisit.java

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;

import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;



/**
 * 输入数据:pageviews模型结果数据
 * 从pageviews模型结果数据中进一步梳理出visit模型
 * sessionid  start-time   out-time   start-page   out-page   pagecounts  ......
 * 
 * @author
 *
 */
public class ClickStreamVisit {

	// 以session作为key,发送数据到reducer
	static class ClickStreamVisitMapper extends Mapper<LongWritable, Text, Text, PageViewsBean> {

		PageViewsBean pvBean = new PageViewsBean();
		Text k = new Text();

		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

			String line = value.toString();
			String[] fields = line.split("\001");
			int step = Integer.parseInt(fields[5]);
			//(String session, String remote_addr, String timestr, String request, int step, String staylong, String referal, String useragent, String bytes_send, String status)
			//299d6b78-9571-4fa9-bcc2-f2567c46df3472.46.128.140-2013-09-18 07:58:50/hadoop-zookeeper-intro/160"https://www.google.com/""Mozilla/5.0"14722200
			pvBean.set(fields[0], fields[1], fields[2], fields[3],fields[4], step, fields[6], fields[7], fields[8], fields[9]);
			k.set(pvBean.getSession());
			context.write(k, pvBean);

		}

	}

	static class ClickStreamVisitReducer extends Reducer<Text, PageViewsBean, NullWritable, VisitBean> {

		@Override
		protected void reduce(Text session, Iterable<PageViewsBean> pvBeans, Context context) throws IOException, InterruptedException {

			// 将pvBeans按照step排序
			ArrayList<PageViewsBean> pvBeansList = new ArrayList<PageViewsBean>();
			for (PageViewsBean pvBean : pvBeans) {
				PageViewsBean bean = new PageViewsBean();
				try {
					BeanUtils.copyProperties(bean, pvBean);
					pvBeansList.add(bean);
				} catch (Exception e) {
					e.printStackTrace();
				}
			}

			Collections.sort(pvBeansList, new Comparator<PageViewsBean>() {

				@Override
				public int compare(PageViewsBean o1, PageViewsBean o2) {

					return o1.getStep() > o2.getStep() ? 1 : -1;
				}
			});

			// 取这次visit的首尾pageview记录,将数据放入VisitBean中
			VisitBean visitBean = new VisitBean();
			// 取visit的首记录
			visitBean.setInPage(pvBeansList.get(0).getRequest());
			visitBean.setInTime(pvBeansList.get(0).getTimestr());
			// 取visit的尾记录
			visitBean.setOutPage(pvBeansList.get(pvBeansList.size() - 1).getRequest());
			visitBean.setOutTime(pvBeansList.get(pvBeansList.size() - 1).getTimestr());
			// visit访问的页面数
			visitBean.setPageVisits(pvBeansList.size());
			// 来访者的ip
			visitBean.setRemote_addr(pvBeansList.get(0).getRemote_addr());
			// 本次visit的referal
			visitBean.setReferal(pvBeansList.get(0).getReferal());
			visitBean.setSession(session.toString());

			context.write(NullWritable.get(), visitBean);

		}

	}

	public static void main(String[] args) throws Exception {
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		job.setJarByClass(ClickStreamVisit.class);

		job.setMapperClass(ClickStreamVisitMapper.class);
		job.setReducerClass(ClickStreamVisitReducer.class);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(PageViewsBean.class);

		job.setOutputKeyClass(NullWritable.class);
		job.setOutputValueClass(VisitBean.class);
		
		
//		FileInputFormat.setInputPaths(job, new Path(args[0]));
//		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		FileInputFormat.setInputPaths(job, new Path("d:/weblog/pageviews"));
		FileOutputFormat.setOutputPath(job, new Path("d:/weblog/visitout"));
		
		boolean res = job.waitForCompletion(true);
		System.exit(res?0:1);

	}

}

获得如下格式的数据

网站日志流量系统----【数据采集模块、数据预处理模块】_第9张图片

小知识点 : 关于mr程序输出文件名

part-r-00000   表示是reducetask的输出
part-m-00000   表示是maptask的输出

小结 :

  • 数据预处理编程技巧

    • 对于本次分析无利用的数据 通常采用逻辑删除 建立标记位 通过01或者true false表示数据是否有效

    • 对于最后一个字段不固定的情况 可以采用动态拼接的方式

    • 静态资源过滤

      js css img (静态数据) 只关心真正请求页面的(index.html)

      data(动态数据)

    • 在mr中,如果涉及小且频繁使用的数据,如何优化?

      • 每次都从数据库查询 效率极低
      • 可以通过数据结构保存在内存中 方便查询 一般在setup方法中进行初始化操作
  • 扩展 : 修改Collection.sort中的compare方法

如给定一个自定义学生类Student
根据年龄倒序排序
student1 student2 student3..............
List students = new ArrayList<Student>;
students.add(student1 student2 student3..............)

Collections.sort(beans, new Comparator<Student>() {

					@Override
					public int compare(Student s1, Student s2) {
						try {
							Long a1 = s1.getAge();
							Long a2 = s2.getAge();
							return a1.compareTo(a2)>0?-1,1;
						} catch (Exception e) {
							e.printStackTrace();
							return 0;
						}
					}

				});

你可能感兴趣的:(大数据,hive,日志流量项目)