网站日志流量系统----【统计分析模块】

模块开发----统计分析

每一种统计指标都可以跟各维度表进行钻取。

  • 分组条件判别技巧

    如果需求中出现 每xxx 各xxx 按xxx , 很大可能就是分组的字段条件

  • 设置智能本地模式 : set hive.exec.mode.local.auto=true;

1. 流量分析

1.1 多维度统计pv总量

  • 需求 : 计算该处理批次(一天)中各小时pvs

    处理数据所在的表 : ods_weblog_detail

    分组条件 : 时间维度 (day hour)

    表中天是分区字段 , 可以不通过group by即可过滤出所需要的天

-- 查询到的就是一天中各小时的pvs , 自己编写的查询sql
select
t.month,t.day,t.hour,count(*) as pvs
from ods_weblog_detail t
where t.datestr='20130918'
group by t.month,t.day,t.hour;
------------------------------------------------
-- 将查询到的结果保存到hdfs上
-- 第一种方式:直接在ods_weblog_detail单表上进行查询
-- 计算该处理批次(一天)中的各小时pvs
-- 首先创建一个表用于存储查询得到的数据
drop table dw_pvs_everyhour_oneday;
create table dw_pvs_everyhour_oneday(month string,day string,hour string,pvs bigint) partitioned by(datestr string);

-- 将查询的结果存储到新建的表中
insert into table dw_pvs_everyhour_oneday partition(datestr='20130918')
select a.month as month,a.day as day,a.hour as hour,count(*) as pvs from ods_weblog_detail a
where  a.datestr='20130918' group by a.month,a.day,a.hour;
  • 需求 : 计算每天的pvs
方式一 : 在上一个基础上sum每个小时就构成了一天
Insert into table dw_pvs_everyday
Select sum(pvs) as pvs,month,day from dw_pvs_everyhour_oneday group by month,day having day='18';

方式二 : 只能查询出一天的pvs量
select
count(*) as pvs
from ods_weblog_detail t
where t.datestr='20130918';

方式三 : 可以按天和月进行分组
select
t.month,t.day,count(*) as pvs
from ods_weblog_detail t
where t.datestr='20130918'
group by t.month,t.day;

---------------------------------------------
-- 将查询的结果保存到hdfs上
-- 直接在ods_weblog_detail单表上进行查询
--计算每天的pvs
drop table dw_pvs_everyday;
create table dw_pvs_everyday(pvs bigint,month string,day string);

insert into table dw_pvs_everyday
select count(*) as pvs,a.month as month,a.day as day from ods_weblog_detail a
group by a.month,a.day;


---------------------------------------
方式四 :跟时间的维度表进行join
--维度 : 月
drop table dw_pvs_everymonth;
create table dw_pvs_everymonth (pvs bigint,month string);

insert into table dw_pvs_everymonth
select count(*) as pvs,a.month from (select distinct month from t_dim_time) a
join ods_weblog_detail b on a.month=b.month group by a.month;

--维度 : 日
计算每天pvs

select count(*) as pvs,a.month as month,a.day as day from (select distinct month, day from t_dim_time) a
join ods_weblog_detail b 
on a.month=b.month and a.day=b.day
group by a.month,a.day; 

--维度 : 小时
计算每小时pvs
select count(*) as pvs,a.month as month,a.day as day,a.hour as hour from (select distinct month, day ,hour from t_dim_time) a
join ods_weblog_detail b 
on a.month=b.month and a.day=b.day and a.hour=b.hour
group by a.month,a.day,a.hour;
执行最终无结果 原因是:宽表中hour字段的提取有误 
substring(time_local,11,3) as hour
变成substring(time_local,12,2) as hour
  • 需求 : 统计每小时各来访url产生的pvs

    表 : ods_weblog_detail

    分组字段 : 时间(hour) url(http_referer)

select 
t.http_referer,t.ref_host,t.month,t.day,t.hour,count(*) as pvs
from ods_weblog_detail t
where t.datestr='20130918'
group by t.http_referer,t.ref_host,t.month,t.day,t.hour limit 10;
能执行  没考虑无意义数据

select
t.http_referer,t.ref_host,t.month,t.day,t.hour,count(*) as pvs
from ods_weblog_detail t
where t.datestr='20130918'
group by t.http_referer,t.ref_host,t.month,t.day,t.hour
having t.ref_host is not null limit 10;

如果再根据pvs数量倒序排序
select
t.http_referer,t.ref_host,t.month,t.day,t.hour,count(*) as pvs
from ods_weblog_detail t
where t.datestr='20130918'
group by t.http_referer,t.ref_host,t.month,t.day,t.hour
having t.ref_host is not null
order by pvs desc limit 10;

--统计每小时各来访url产生的pv量,查询结果存入:("dw_pvs_referer_everyhour" )
--并且将数据保存到hdfs
drop table dw_pvs_referer_everyhour;
create table dw_pvs_referer_everyhour(referer_url string,referer_host string,month string,day string,hour string,pv_referer_cnt bigint) partitioned by(datestr string);

insert into table dw_pvs_referer_everyhour partition(datestr='20130918')
select http_referer,ref_host,month,day,hour,count(1) as pv_referer_cnt
from ods_weblog_detail 
group by http_referer,ref_host,month,day,hour 
having ref_host is not null
order by hour asc,day asc,month asc,pv_referer_cnt desc;
  • 需求:统计每小时各来访host的产生的pv数并排序

    表 : ods_weblog_detail

    分组 : 时间(hour) host

方式一:在上一个基础之上 根据host分组 sum每个pvs

方式二:去除无意义数据
select
t.ref_host,t.hour,count(1) as pvs
from ods_weblog_detail t
group by t.ref_host,t.hour
having t.ref_host is not null
order by pvs desc limit 10;

--统计每小时各来访host的产生的pv数并排序
--并且将数据保存到hdfs
drop table dw_pvs_refererhost_everyhour;
create table dw_pvs_refererhost_everyhour(ref_host string,month string,day string,hour string,ref_host_cnts bigint) partitioned by(datestr string);

insert into table dw_pvs_refererhost_everyhour partition(datestr='20130918')
select ref_host,month,day,hour,count(1) as ref_host_cnts
from ods_weblog_detail 
group by ref_host,month,day,hour 
having ref_host is not null
order by hour asc,day asc,month asc,ref_host_cnts desc;

扩展了解:User Agent 也简称 UA。它是一个特殊字符串头,是一种向访问网站提供所使用的浏览器类型及版本、操作系统及版本、浏览器内核、等信息的标识。

https://blog.csdn.net/laozhaokun/article/details/40621605

  • 按终端维度(了解)

下列查询参考即可

select distinct(http_user_agent) from ods_weblog_detail where http_user_agent like '%Chrome%' limit 200;
  • 按栏目维度(了解)

网站日志流量系统----【统计分析模块】_第1张图片

  • 按 按 referer 维度(了解)
-- 统计每小时各来访 url 产生的 pv 量
drop table dw_pvs_referer_everyhour;
create table dw_pvs_referer_everyhour(referer_url string,referer_host string,month string,day string,hour
string,pv_referer_cnt bigint) partitioned by(datestr string);
insert into table dw_pvs_referer_everyhour partition(datestr='20130918')
select http_referer,ref_host,month,day,hour,count(1) as pv_referer_cnt
from ods_weblog_detail
group by http_referer,ref_host,month,day,hour
having ref_host is not null
order by hour asc,day asc,month asc,pv_referer_cnt desc;

-- 统计每小时各来访 host 的产生的 pv 数并排序
drop table dw_pvs_refererhost_everyhour;
create table dw_pvs_refererhost_everyhour(ref_host string,month string,day string,hour string,ref_host_cnts
bigint) partitioned by(datestr string);
insert into table dw_pvs_refererhost_everyhour partition(datestr='20130918')
select ref_host,month,day,hour,count(1) as ref_host_cnts
from ods_weblog_detail
group by ref_host,month,day,hour
having ref_host is not null
order by hour asc,day asc,month asc,ref_host_cnts desc;

注:还可以按来源地域维度、访客终端维度等计算

总结多维分析步骤:

  • 理清需求的意义 包括指标的含义
  • 确定数据在哪 表(可能是已有的表 可能需求子查询先得出这个表)
  • 确定分组条件 字段(每 按 各
  • 得出度量值(max min count sum avg topN)

  • 需求:按照时间维度,统计一天内各小时产生最多pvs的来源(host)topN(分组Top)

    分组字段 : 时间(hour) 来源(host) pvs

    表数据 : dw_pvs_refererhost_everyhour

    度量:top3

知识点 : TOPN ( 分组 TOP)

row_number()函数

语法:row_number() over (partition by xxx order by xxx) rank,rank 为分组的别名,相当于新增一个字段为 rank。

row_number ,rank ,dense_ran

示例数据:

1   a   10
2   a   12
3   b   13
4   b   12
5   a   14
6   a   15
7   a   13
8   b   11
9   a   16
10  b   17
11  a   14

sql语句:

select id,
name,
sal,
rank()over(partition by name order by sal desc ) rp,
dense_rank() over(partition by name order by sal desc ) drp,
row_number()over(partition by name order by sal desc) rmp
from f_test

结果展示

10   b    17    1    1    1
3    b    13    2    2    2
4    b    12    3    3    3
8    b    11    4    4    4
9    a    16    1    1    1
6    a    15    2    2    2
11   a    14    3    3    3
5    a    14    3    3    4
7    a    13    5    4    5
2    a    12    6    5    6
1    a    10    7    6    7

详情请见下图
网站日志流量系统----【统计分析模块】_第2张图片

网站日志流量系统----【统计分析模块】_第3张图片

  • row over() 考虑了数据的重复性 , 挤占坑位

语法 : row() over(partition by xxx order by xxx) as rank

  • dense_rank over() 考虑了数据的重复性 , 不挤占坑位

语法 : dense_rank() over(partition by xxx order by xxx) as rank

  • row_number_over() 不考虑数据的重复性

语法 : row_number() over(partition by xxx order by xxx) as rank

一般找出topN我们都采用dense_rank over()

  • 统计pv总量最大的来源TOPN
--需求:按照时间维度,统计一天内各小时产生最多pvs的来源topN
select ref_host,ref_host_cnts,concat(month,day,hour),
row_number() over (partition by concat(month,day,hour) order by ref_host_cnts desc) od
from dw_pvs_refererhost_everyhour;

--row_number函数
select ref_host,ref_host_cnts,concat(month,day,hour),
row_number() over (partition by concat(month,day,hour) order by ref_host_cnts desc) as od 
from dw_pvs_refererhost_everyhour;

--综上可以得出
--将数据保存到hdfs中
drop table dw_pvs_refhost_topn_everyhour;
create table dw_pvs_refhost_topn_everyhour(
hour string,
toporder string,
ref_host string,
ref_host_cnts string
)partitioned by(datestr string);

insert into table dw_pvs_refhost_topn_everyhour partition(datestr='20130918')
select t.hour,t.od,t.ref_host,t.ref_host_cnts from
 (select ref_host,ref_host_cnts,concat(month,day,hour) as hour,
row_number() over (partition by concat(month,day,hour) order by ref_host_cnts desc) as od 
from dw_pvs_refererhost_everyhour) t where od<=3;

tips:

concat : concat()函数用于将多个字符串连接成一个字符串

concat(str1,str2,…)

返回结果为连接参数产生的字符串。如有任何一个参数为NULL ,则返回值为 NULL。

contcat_ws(separator,str1,str2,…)

contcat_ws() 代表 CONCAT With Separator ,是CONCAT()的特殊形式。第一个参数是其它参数的分隔符。分隔符的位置放在要连接的两个字符串之间。分隔符可以是一个字符串,也可以是其它参数。注意:如果分隔符为 NULL,则结果为 NULL。函数会忽略任何分隔符参数后的 NULL 值。

如连接后以逗号分隔

和MySQL中concat函数不同的是, concat_ws函数在执行的时候,不会因为NULL值而返回NULL

  • 需求:统计今日所有来访者平均请求的页面数。

    • 总的请求页面数/总人数

      表 : ods_weblog_detail

    --首先计算每个人产生的请求页面数
    select
    t.remote_addr,count(1) as pvs
    from ods_weblog_detail t
    where t.datestr='20130918'
    group by t.remote_addr;
    
    --再算平均每个人的请求页面数
    select
    sum(a.pvs)/count(a.t.remote_addr)
    from (select
    t.remote_addr,count(1) as pvs
    from ods_weblog_detail t
    where t.datestr='20130918'
    group by t.remote_addr) a;
    报错: Invalid column reference 't'  在嵌套子查询中 不能多级嵌套引用  可以采用别名的方式引用
    --正确写法
    select
    sum(a.pvs)/count(a.ip)
    from (select t.remote_addr as ip,count(1) as pvs from ods_weblog_detail t where t.datestr='20130918' group by t.remote_addr) a;
    
    ----------------------------------------------------
    --需求描述:统计今日所有来访者平均请求的页面数。
    --总页面请求数/去重总人数
    --将数据保存到hdfs上
    drop table dw_avgpv_user_everyday;
    create table dw_avgpv_user_everyday(
    day string,
    avgpv string);
    
    insert into table dw_avgpv_user_everyday
    select '20130918',sum(b.pvs)/count(b.remote_addr) from
    (select remote_addr,count(1) as pvs from ods_weblog_detail where datestr='20130918' group by remote_addr) b;
    
    
    
    --------------------
    --或者如下形式也行
    select 
    allen.avgpvs
    from
    (select
    sum(a.pvs)/count(a.ip) as avgpvs
    from
    (select
    t.remote_addr as ip,count(*) as pvs
    from ods_weblog_detail t
    where t.datestr='20130918'
    group by t.remote_addr) a) allen
    

2. 受访分析(从页面的角度分析)

  • 需求: 统计每日最热门的页面 top10

    表:ods_weblog_detail

    分组:天(分区字段 where)页面(request)

    方式一 : 
    row_number() over (partition by xxx order by xx) as step
    

    因为此处的分组字段天恰巧也是分区字段 就不需要通过groupby 过滤

    select
    t.request,count(*) as pages
    from ods_weblog_detail t
    where t.datestr='20130918'
    group by t.request
    order by pages desc limit 10;
    
    ---------------------------------------
    --热门页面统计
    --统计每日最热门的页面top10
    --并且将数据保存到hdfs中
    
    drop table dw_hotpages_everyday;
    create table dw_hotpages_everyday(day string,url string,pvs string);
    
    insert into table dw_hotpages_everyday
    select '20130918',a.request,a.request_counts from
    (select request as request,count(request) as request_counts from ods_weblog_detail where datestr='20130918' group by request having request is not null) a
    order by a.request_counts desc limit 10;
    

3. 访客分析

3.1 独立访客
  • 需求 : 按照时间维度比如小时来统计独立访客及其产生的 pv。
--时间维度:时
--将查询到的数据保存到hdfs中
drop table dw_user_dstc_ip_h;
create table dw_user_dstc_ip_h(
remote_addr string,
pvs      bigint,
hour     string);

insert into table dw_user_dstc_ip_h 
select remote_addr,count(1) as pvs,concat(month,day,hour) as hour 
from ods_weblog_detail
Where datestr='20130918'
group by concat(month,day,hour),remote_addr;

--在上述基础之上,可以继续分析,比如每小时独立访客总数
select count(1) as dstc_ip_cnts,hour from dw_user_dstc_ip_h group by hour;


--时间维度:日
select remote_addr,count(1) as counts,concat(month,day) as day
from ods_weblog_detail
Where datestr='20130918'
group by concat(month,day),remote_addr;


--时间维度: 月
select remote_addr,count(1) as counts,month 
from ods_weblog_detail
group by month,remote_addr;

tips : concat可以将三个字段作为一个来划分

  • 需求:每日新访客

    思路见画图

网站日志流量系统----【统计分析模块】_第4张图片

--获取的是新访客
select
今天.ip
from 今天 left join 历史 on 今天.ip=历史.ip
where 历史.ip is null;

今天 : (如何获取今天所有的访客) 也就是今天的独立访客(UV)
select
distinct t.remote_addr
from ods_weblog_detail t
where t.datestr='20130918';

历史:dw_user_dsct_history
--代入公式:
--新访客
select
today.ip
from(select
distinct t.remote_addr
from ods_weblog_detail t
where t.datestr='20130918') today left join  dw_user_dsct_history history on today.ip=history.ip
where history.ip is null;

--老访客
select
today.ip
from (select
distinct t.remote_addr as ip
from ods_weblog_detail t
where t.datestr='20130918') today left join  dw_user_dsct_history history on today.ip=history.ip
where history.ip is not null;

------------------------------------------------
--历日去重访客累积表
drop table dw_user_dsct_history;
create table dw_user_dsct_history(
day string,
ip string
)
partitioned by(datestr string);
--每日新用户追加到累计表
insert into table dw_user_dsct_history partition(datestr='20130918')
select day,ip from dw_user_new_d where datestr='20130918';


--每日新访客表
--并且将数据保存到hdfs中
drop table dw_user_new_d;
create table dw_user_new_d (
day string,
ip string
) 
partitioned by(datestr string);

--每日新用户插入新访客表
insert into table dw_user_new_d partition(datestr='20130918')
select tmp.day as day,tmp.today_addr as new_ip from
(
select today.day as day,today.remote_addr as today_addr,old.ip as old_addr 
from 
(select distinct remote_addr as remote_addr,"20130918" as day from ods_weblog_detail where datestr="20130918") today
left outer join 
dw_user_dsct_history old
on today.remote_addr=old.ip
) tmp
where tmp.old_addr is null;


--验证:
select count(distinct remote_addr) from ods_weblog_detail;

select count(1) from dw_user_dsct_history where datestr='20130918';

select count(1) from dw_user_new_d where datestr='20130918';

注:还可以按来源地域维度、访客终端维度等计算


4. 访客Visit分析(点击流模型)

4.1 回头/单次访客统计
  • 需求:查询今日所有回头访客及其访问次数(session)。

    表 : ods_click_stream_visit

--查询每天访客访问次数
select
t.remote_addr,count(t.session) as visits
from ods_click_stream_visit t
where t.datestr='20130918'
group by t.remote_addr;

--单次访客
select
*
from (select t.remote_addr,count(t.session) as visits
from ods_click_stream_visit t
where t.datestr='20130918'
group by t.remote_addr) a
where a.visits=1;

--回头访客
select
*
from (select t.remote_addr,count(t.session) as visits
from ods_click_stream_visit t
where t.datestr='20130918'
group by t.remote_addr) a
where a.visits>1;

或者 : 
--回头访客
select 
t.remote_addr,count(t.session) as visits
from ods_click_stream_visit t
where t.datestr='20130918'
group by t.remote_addr
having visits >1;

--单次访客
select 
t.remote_addr,count(t.session) as visits
from ods_click_stream_visit t
where t.datestr='20130918'
group by t.remote_addr
having visits =1;


----------------------------------------------------
--  回头/单次访客统计
-- 并将查询的数据保存到hdfs上
drop table dw_user_returning;
create table dw_user_returning(
day string,
remote_addr string,
acc_cnt string)
partitioned by (datestr string);

insert overwrite table dw_user_returning partition(datestr='20130918')
select tmp.day,tmp.remote_addr,tmp.acc_cnt
from
(select '20130918' as day,remote_addr,count(session) as acc_cnt from ods_click_stream_visit group by remote_addr) tmp
where tmp.acc_cnt>1;
  • 需求:人均访问频次

    总的session个数/人==人均会话数

    总的pv数/人==人均页面访问次数

    如果存在需求上的模糊点 需要进行沟通。

    表:ods_click_stream_visit

--人均会话数
select 
count(t.session)/count(distinct t.remote_addr)
from ods_click_stream_visit t
where t.datestr='20130918';  


--人均页面访问次数
select 
sum(t.pagevisits)/count(distinct t.remote_addr)
from ods_click_stream_visit t
where t.datestr='20130918'; 

5. 关键路径转化率分析 (漏斗模型)

  • 级联求和思路

    如果发现需求中的指标计算需要当前的数据跟之前的数据有关,解题方向就是自己join自己。

    只有当自己和自己join的时候 当前的状态就会跟之前的状态出现在一行中。

网站日志流量系统----【统计分析模块】_第5张图片

测试 :

create table t_salary_detail(username string,month string,salary int)
row format delimited fields terminated by ',';

load data local inpath '/root/hivedata/t_salary_detail.dat' into table t_salary_detail;

A,2015-01,5
A,2015-01,15
B,2015-01,5
A,2015-01,8
B,2015-01,25
A,2015-01,5
A,2015-02,4
A,2015-02,6
B,2015-02,10
B,2015-02,5
A,2015-03,7
A,2015-03,9
B,2015-03,11
B,2015-03,6

select * from t_salary_detail;
+--------------------------+-----------------------+------------------------+--+
| t_salary_detail.username  | t_salary_detail.month  | t_salary_detail.salary  |
+--------------------------+-----------------------+------------------------+--+
| A                        | 2015-01               | 5                      |
| A                        | 2015-01               | 15                     |
| B                        | 2015-01               | 5                      |
| A                        | 2015-01               | 8                      |
| B                        | 2015-01               | 25                     |
| A                        | 2015-01               | 5                      |
| A                        | 2015-02               | 4                      |
| A                        | 2015-02               | 6                      |
| B                        | 2015-02               | 10                     |
| B                        | 2015-02               | 5                      |
| A                        | 2015-03               | 7                      |
| A                        | 2015-03               | 9                      |
| B                        | 2015-03               | 11                     |
| B                        | 2015-03               | 6                      |
+--------------------------+-----------------------+------------------------+--+

1、第一步,先求个用户的月总金额 , 有上述
select username,month,sum(salary) as salary from t_salary_detail group by username,month;

+-----------+----------+---------+-
| username  |  month   | salary  |   total(累加)
+-----------+----------+---------+-
| A         | 2015-01  | 33      |    33
| A         | 2015-02  | 10      |    43
| A         | 2015-03  | 16      |    59
| B         | 2015-01  | 33      |    33
| B         | 2015-02  | 15      |    48
| B         | 2015-03  | 17      |    65
+-----------+----------+---------+--+

2、第二步,将月总金额表 自己连接 自己连接
由于我们需要将需求中的数据整理到一行 , 因此我们使用自己join自己
select A.*,B.* FROM
(select username,month,sum(salary) as salary from t_salary_detail group by username,month) A 
inner join 
(select username,month,sum(salary) as salary from t_salary_detail group by username,month) B
on
A.username=B.username
where B.month <= A.month;
+-------------+----------+-----------+-------------+----------+-----------+--+
| a.username  | a.month  | a.salary  | b.username  | b.month  | b.salary  |
+-------------+----------+-----------+-------------+----------+-----------+--+
| A           | 2015-01  | 33        | A           | 2015-01  | 33        |
| A           | 2015-02  | 10        | A           | 2015-01  | 33        |
| A           | 2015-02  | 10        | A           | 2015-02  | 10        |
| A           | 2015-03  | 16        | A           | 2015-01  | 33        |
| A           | 2015-03  | 16        | A           | 2015-02  | 10        |
| A           | 2015-03  | 16        | A           | 2015-03  | 16        |
| B           | 2015-01  | 30        | B           | 2015-01  | 30        |
| B           | 2015-02  | 15        | B           | 2015-01  | 30        |
| B           | 2015-02  | 15        | B           | 2015-02  | 15        |
| B           | 2015-03  | 17        | B           | 2015-01  | 30        |
| B           | 2015-03  | 17        | B           | 2015-02  | 15        |
| B           | 2015-03  | 17        | B           | 2015-03  | 17        |
+-------------+----------+-----------+-------------+----------+-----------+--+




3、第三步,从上一步的结果中
进行分组查询,分组的字段是a.username a.month
求月累计值:  将b.month <= a.month的所有b.salary求和即可
select A.username,A.month,max(A.salary) as salary,sum(B.salary) as accumulate
from 
(select username,month,sum(salary) as salary from t_salary_detail group by username,month) A 
inner join 
(select username,month,sum(salary) as salary from t_salary_detail group by username,month) B
on
A.username=B.username
where B.month <= A.month
group by A.username,A.month
order by A.username,A.month;


+-------------+----------+---------+-------------+--+
| a.username  | a.month  | salary  | accumulate  |
+-------------+----------+---------+-------------+--+
| A           | 2015-01  | 33      | 33          |
| A           | 2015-02  | 10      | 43          |
| A           | 2015-03  | 16      | 59          |
| B           | 2015-01  | 30      | 30          |
| B           | 2015-02  | 15      | 45          |
| B           | 2015-03  | 17      | 62          |
+-------------+----------+---------+-------------+--+
  • 需求 : 在一条指定的业务流程中,各个步骤的完成人数及相对上一个步骤的百分比。

    tips: union操作符合并两个或多个 SELECT 语句的结果。

load data local inpath '/root/hivedata/click-part-r-00000' overwrite into table ods_click_pageviews partition(datestr='20130920');

----------------------------------------------------------
---1、查询每一个步骤的总访问人数
UNION将多个SELECT语句的结果集合并为一个独立的结果集

create table dw_oute_numbs as 
select 'step1' as step,count(distinct remote_addr)  as numbs from ods_click_pageviews where datestr='20130920' and request like '/item%'
union
select 'step2' as step,count(distinct remote_addr)  as numbs from ods_click_pageviews where datestr='20130920' and request like '/category%'
union
select 'step3' as step,count(distinct remote_addr)  as numbs from ods_click_pageviews where datestr='20130920' and request like '/order%'
union
select 'step4' as step,count(distinct remote_addr)  as numbs from ods_click_pageviews where datestr='20130920' and request like '/index%';


select * from dw_oute_numbs;
+---------------------+----------------------+--+
| dw_oute_numbs.step  | dw_oute_numbs.numbs  |
+---------------------+----------------------+--+
| step1               | 1029                 |
| step2               | 1029                 |
| step3               | 1028                 |
| step4               | 1018                 |
+---------------------+----------------------+--+
----------------------------------------------------------------------------
--2、查询每一步骤相对于路径起点人数的比例
--级联查询,自己跟自己join

select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs  from dw_oute_numbs rn
inner join 
dw_oute_numbs rr;join后结果如下图所示:
+---------+----------+---------+----------+--+
| rnstep  | rnnumbs  | rrstep  | rrnumbs  |
+---------+----------+---------+----------+--+
| step1   | 1029     | step1   | 1029     |
| step2   | 1029     | step1   | 1029     |
| step3   | 1028     | step1   | 1029     |
| step4   | 1018     | step1   | 1029     |
| step1   | 1029     | step2   | 1029     |
| step2   | 1029     | step2   | 1029     |
| step3   | 1028     | step2   | 1029     |
| step4   | 1018     | step2   | 1029     |
| step1   | 1029     | step3   | 1028     |
| step2   | 1029     | step3   | 1028     |
| step3   | 1028     | step3   | 1028     |
| step4   | 1018     | step3   | 1028     |
| step1   | 1029     | step4   | 1018     |
| step2   | 1029     | step4   | 1018     |
| step3   | 1028     | step4   | 1018     |
| step4   | 1018     | step4   | 1018     |
+---------+----------+---------+----------+--+


--每一步的人数/第一步的人数==每一步相对起点人数比例
select tmp.rnstep,tmp.rnnumbs/tmp.rrnumbs as ratio
from
(
select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs  from dw_oute_numbs rn
inner join 
dw_oute_numbs rr) tmp
where tmp.rrstep='step1';


tmp
+---------+----------+---------+----------+--+
| rnstep  | rnnumbs  | rrstep  | rrnumbs  |
+---------+----------+---------+----------+--+
| step1   | 1029     | step1   | 1029     |
| step2   | 1029     | step1   | 1029     |
| step3   | 1028     | step1   | 1029     |
| step4   | 1018     | step1   | 1029     |

--------------------------------------------------------------------------------
--3、查询每一步骤相对于上一步骤的漏出率

--首先通过自join表过滤出每一步跟上一步的记录

select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs  from dw_oute_numbs rn
inner join 
dw_oute_numbs rr
where cast(substr(rn.step,5,1) as int)=cast(substr(rr.step,5,1) as int)-1;


注意:cast为Hive内置函数 类型转换
select cast(1 as float); --1.0  
select cast('2016-05-22' as date); --2016-05-22 

| step1   | 1029     | step2   | 1029     |
| step2   | 1029     | step3   | 1028     |
| step3   | 1028     | step4   | 1018     |


+---------+----------+---------+----------+--+
| rnstep  | rnnumbs  | rrstep  | rrnumbs  |
+---------+----------+---------+----------+--+
| step1   | 1029     | step2   | 1029     |
| step2   | 1029     | step3   | 1028     |
| step3   | 1028     | step4   | 1018     |
+---------+----------+---------+----------+--+

--然后就可以非常简单的计算出每一步相对上一步的漏出率
select tmp.rrstep as step,tmp.rrnumbs/tmp.rnnumbs as leakage_rate
from
(
select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs  from dw_oute_numbs rn
inner join 
dw_oute_numbs rr) tmp
where cast(substr(tmp.rnstep,5,1) as int)=cast(substr(tmp.rrstep,5,1) as int)-1;

-----------------------------------------------------------------------------------
--4、汇总以上两种指标
select abs.step,abs.numbs,abs.rate as abs_ratio,rel.rate as leakage_rate
from 
(
select tmp.rnstep as step,tmp.rnnumbs as numbs,tmp.rnnumbs/tmp.rrnumbs as rate
from
(
select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs  from dw_oute_numbs rn
inner join 
dw_oute_numbs rr) tmp
where tmp.rrstep='step1'
) abs
left outer join
(
select tmp.rrstep as step,tmp.rrnumbs/tmp.rnnumbs as rate
from
(
select rn.step as rnstep,rn.numbs as rnnumbs,rr.step as rrstep,rr.numbs as rrnumbs  from dw_oute_numbs rn
inner join 
dw_oute_numbs rr) tmp
where cast(substr(tmp.rnstep,5,1) as int)=cast(substr(tmp.rrstep,5,1) as int)-1
) rel
on abs.step=rel.step;

你可能感兴趣的:(大数据,hive,日志流量项目)