- 数据结构应用实例(四)——最小生成树
cyzhou1221
数据结构基础数据结构
Content:一、问题描述二、算法思想三、代码实现四、两种算法的比较五、小结一、问题描述 利用prim算法和kruskal算法实现最小生成树问题;二、算法思想 首先判断图是否连通,只有在连通的情况下才进行最小树的生成;三、代码实现#include#include#include#definemaxx999999#pragmawarning(disable:4996)typedefstruct
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- C语言数据结构克鲁斯卡尔算法-求最小生成树
Yetteego
数据结构与算法(c语言)c语言C语言数据结构
/**克鲁斯卡尔算法*得到图的最小生成树*构造一个无向网的的邻接矩阵*创建一个临时数组*对edge数组进行排序*/#include#include#includetypedefchar*VertexType;//顶点的信息的数据类型typedefintArcType;//权重胡数据类型#defineVERTEXNUM100//最大顶点数#defineMAX_INT32726//权重的无限大取值#d
- 最短路算法一
halcyonfreed
算法
2024061819:33朴素版Dijkstra47:00Heap优化版1:04:00Bellman-ford最短路算法——5种!!!考察重点:不会考算法证明,这里不讲了,重点是实现+抽象1.如何建图——如何定义点边,抽象成一个图问题Prim/i/,kruskal是最小生成树算法不是prime/ai/质数1.是么时候用?方法n图的node数m边数单源:只有一个起点,求从1个点到其他所有点/第n号点
- BZOJ-2521: [Shoi2010]最小生成树(最小割)(本蒟蒻的BZOJ第401 AC撒花~)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2521挺神奇的一个最小割模型,如果要使得该边一定在MST上,那么要保证该边连接的两个连通块之间不存在其他边权小于等于它的边,那么自然就最小割啦。代码:#include#include#includeusingnamespacestd;#definemaxn1010#definemaxv1010#
- 无向图的连通分量
小凳子在线
图论
读入一个无向图的邻接矩阵(即数组表示),建立无向图并按照以上描述中的算法建立无向图的生成森林。对于森林中的每一棵生成树,遍历所有顶点,并输出遍历顶点的顺序。输入输入的第一行包含一个正整数n,表示图中共有n个顶点。其中n不超过50。以后的n行中每行有n个用空格隔开的整数0或1,对于第i行的第j个0或1,1表示第i个顶点和第j个顶点有直接连接,0表示没有直接连接。当i和j相等的时候,保证对应的整数为0
- 华为 HCIP-Datacom H12-821 题库 (1)
可惜已不在
HCIP华为网络
有需要题库的可以看主页置顶需要题库的加Q裙V群仅进行学习交流1.MSTP有不同的端口角色,对此说法不正确的是:A、MSTP中除边缘端口外,其他端口角色都参与MSTP的计算过程B、MSTP同一端口在不同的生成树实例中可以担任不同的角色。C、MSTP域边缘端口是指位于MST域的边缘并连接其它MST域或SST的端口D、Backup端口作为根端口的备份,提供了从指定桥到根的另一条可切换路径答案:D解析:在
- 数据结构-二叉树的遍历和线索二叉树
0X78
C语言各问题解决方法数据结构数据结构算法
一、了解二叉树遍历1.先序遍历定义:先序遍历是指在访问一个节点时,先访问该节点本身,然后再访问其左子树和右子树。顺序:访问根节点先序遍历左子树先序遍历右子树示例:假设有如下二叉树:A/\BC/\DE先序遍历的结果为:A,B,D,E,C应用:先序遍历通常用于复制树结构或生成树的前缀表达式。2.中序遍历定义:中序遍历是指在访问一个节点时,先访问其左子树,然后访问该节点本身,最后访问其右子树。顺序:中序
- MSTP多实例生成树(华为)
期待未来的男孩
路由交换网络
目录MSTP简介定义目的MSTP基本概念MSTP的网络层次MST域(MSTRegion)MSTP报文MSTP报文格式MSTP拓扑计算优先级向量CIST的计算MSTI的计算MSTP快速收敛机制配置MSTP+VRRP组合组网示例配置思路操作步骤MSTP简介定义多生成树协议MSTP(MultipleSpanningTreeProtocol)是IEEE802.1s中定义的生成树协议,通过生成多个生成树,来
- 并查集【算法 12】
终末圆
算法算法cc++python数据结构acmc语言
并查集(Union-Find)的基础概念与实现并查集(Union-Find)是一种用于处理不相交集合(disjointsets)的数据结构,常用于解决连通性问题。典型的应用场景包括动态连通性问题(如网络节点连通性检测)、图论中的最小生成树(Kruskal算法)、社交网络中的群体归属等。并查集的两大基本操作合并操作(Union):将两个不同的集合合并为一个集合。查找操作(Find):查询某个元素属于
- 探索贪心算法:解决优化问题的高效策略
快乐非自愿
贪心算法算法
贪心算法是一种在每一步选择中都采取当前最佳选择的算法,以期在整体上达到最优解。它广泛应用于各种优化问题,如最短路径、最小生成树、活动选择等。本文将介绍贪心算法的基本概念、特点、应用场景及其局限性。贪心算法的基本概念贪心算法的核心思想是局部最优策略,即在每一步选择中都选择当前看起来最优的选项,希望通过一系列的局部最优选择达到全局最优。贪心算法的特点局部最优选择:每一步都选择当前状态下最优的操作。无需
- 数据结构——第六章 图
疯子书生z
数据结构数据结构
[知识框架]主要掌握深度优先搜索和广度优先搜索,图的基本概念及基本性质、图的存储结构(邻接矩阵、邻接表、邻接多重表和十字链表)及其特性、存储结构之间的转化、基于存储结构上的遍历操作和各种应用(拓扑排序、最小生成树、最短路径和关键路径)等。通常要求掌握基本思想和实现步骤(手动模拟)。6.1图的基本概念6.1.1图的定义图GGG由顶点集VVV和边集EEE组成,记为G=(V,E)G=(V,E)G=(V,
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 单调栈 LeetCode 1130. 叶值的最小代价生成树
EQUINOX1
OJ刷题解题报告leetcode算法动态规划
目录一、题目1、题目描述2、输入输出2.1输入2.2输出3、原题链接二、解题报告1、思路分析2、复杂度3、代码详解一、题目1、题目描述给你一个正整数数组arr,考虑所有满足以下条件的二叉树:每个节点都有0个或是2个子节点。数组arr中的值与树的中序遍历中每个叶节点的值一一对应。每个非叶节点的值等于其左子树和右子树中叶节点的最大值的乘积。在所有这样的二叉树中,返回每个非叶节点的值的最小可能总和。这个
- STP---生成树协议
보고.싶다
hcipphp服务器开发语言
STP的作用a)Stp通过阻塞端口来消除环路,并能够实现链路备份目的b)消除了广播风暴c)物理链路冗余,网络变成了层次化结构的网络STP操作选举一个根桥每个非根交换机选举一个根端口每个网段选举一个指定端口阻塞非根,非指定端口STP--生成树协议:作用专门设计出来解决二层环路问题的协议线路冗余设备冗余交换机的广播风暴:洪范的数据帧在交换机之间来回循环发送,浪费资源MAC地址表的偏移多帧复制交换机会逻
- 最小生成树 - Kruskal算法
我想进大厂
算法c++图论
kruskal算法---求稀疏图的最小生成树步骤1,将所有边按权重从大到小排序,调用系统的sort函数2,枚举每条边a、b,权重cif(a、b不联通)就将这条边加入集合中输入格式第一行包含两个整数n和m。接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。输出格式共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impos
- 图与树的基本概念
小魏冬琅
其他算法
目录引言图与树结构的重要性图的基本概念图的表示方式图的遍历算法树的基本概念树的定义与性质树的遍历二叉树与多叉树的概念图与树的高级应用最短路径算法最小生成树算法总结与应用综合实例分析引言在计算机科学的世界中,图和树是两种非常重要的数据结构。它们不仅在理论上有着广泛的研究价值,更是在实际编程中广泛应用于网络通信、路径规划、数据库索引等领域。通过深入理解图与树的基本结构与算法,我们可以更高效地解决许多复
- 算法学习6——贪心算法
零 度°
算法学习算法学习贪心算法
什么是贪心算法?贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。贪心算法的特点局部最优选择:每一步都做出在当前情况下最优的选择。无后效性:一旦某个状态被确定,就不会再被改变或回溯。逐步构造解决方案:通过一系列的选择逐步构建出最终的解决方案。经典例子及其Pyt
- eNSP学习——RSTP基础配置
TXFBAP
#交换机相关华为学习网络华为
目录知识储备实验内容:实验目的:实验步骤:实验拓扑实验编址MAC地址表实验步骤一、基本配置二、配置RSTP基本功能三、配置边缘端口四、查看备份端口状态需要完整的配置命令大全的可以点击链接自取:华为eNSP各种设备配置命令大全PDF版资源-CSDN文库RSTP协议是对STP的升级,它重新划定端口的角色及状态,使用更快速的握手协商机制,降低了收敛时间,使它成为继STP协议后首选的生成树协议,不足之处就
- 华为---RSTP(一)---RSTP简介
义一
网络华为网络
目录1.STP(SpanningTreeProtocol,生成树协议)的作用2.STP的缺点2.1STP网络拓扑收敛慢2.2STP网络链路故障,端口状态切换慢2.3终端链路参与STP网络运算,浪费网络资源2.4STP网络拓扑变更机制复杂,效率低下2.5STP交换机端口角色偏少,角色转换缓慢2.6STP交换机端口状态偏多3.RSTP和STP的不同之处4.RSTP和STP端口状态对比5.RSTP的端口
- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- 蓝桥杯:C++贪心算法、字符串函数、朴素模式匹配算法、KMP算法
DaveVV
蓝桥杯c++蓝桥杯c++贪心算法算法开发语言数据结构c语言
贪心算法贪心(Greedy)算法的原理很容易理解:把整个问题分解成多个步骤,在每个步骤都选取当前步骤的最优方案,直到所有步骤结束;每个步骤都不考虑对后续步骤的影响,在后续步骤中也不再回头改变前面的选择。贪心算法虽然简单,但它有广泛的应用。例如图论中的最小生成树(MinimalSpanningTree,MST)算法、单源最短路径算法(Dijkstra)都是贪心算法的典型应用。贪心算法的主要问题是不一
- 【数据结构】图
rygttm
数据结构数据结构算法
文章目录图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法(无向连通图一定有最小生成树)4.单源最短路径的两种算法5.多源最短路径图1.图的两种存储结构1.图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存
- 软考30-上午题-数据结构-小结
ruleslol
软考中级学习笔记
一、杂题汇总真题1:有向图——AOV带权有向图——AOE真题2:二叉排序树:左子树<根节点<右子树。二叉排序树中序遍历,节点关键字有序(递增);关键字初始序列有序,二叉树是单支树。(无序,也可以是单支树)真题3:真题4:真题5:真题6:真题7:prim算法,时间复杂度为:O(n^2),n为图的顶点数。该算法的计算时间与图中的边数无关,所以,该算法适合边稠密的图的最小生成树。kruscal算法,时间
- 根据邻接表画广度优先生成树和深度优先生成树
Just right
深度优先宽度优先算法
不保证正确,也希望你们发现错误在评论区评论题目画出邻接表,根据邻接表写出从V1开始的广度优先遍历序列画出广度优先生成树广度优先遍历序列V1V2V4V3广度优先生成树深度优先遍历序列V1V2V3V4深度优先生成树
- 备战蓝桥杯---图论之最小生成树
CoCoa-Ck
图论算法蓝桥杯c++笔记
首先,什么是最小生成树?他就是无向图G中的所有生成树中树枝权值总和最小的。如何求?我们不妨采用以下的贪心策略:Prim算法(复杂度:(n+m)logm):我们对于把上述的点看成两个集合,一个是确定了最小生成树的点,一个还没有确定,我们只要不断把距离已经确定的集合的最短的边添加进去即可。假如我们加的距离不是最小的,那么当我们假设未确定的点已经构成了他们点的最小生成树,那么我们此时用距离最小的去添加他
- HCIA~HCIE个人笔记索引
Hades_Ling
HCIA相关知识HCIP相关知识华为网络
HCIA~HCIE个人笔记索引HCIA部分(2022.11.27~2022.12.19)1.0.0华为设备telnet与ssh的配置1.1.0华为设备FTP服务器2.0.0以太网CSMA-CD与CSMA-CA的区别与工作方式2.1.0以太网以太网帧格式与报文分片2.10.0以太网传统STP生成树(简介、工作方式)2.10.1以太网传统STP生成树(STPBPDU、STP端口状态、STP工作过程)2
- 最小生成树详解(Prim算法/Kruskal算法)
Stephen_Curry___
算法c++c语言数据结构图搜索算法
最小生成树⭐今天为大家带来的是最小生成树算法⭐在学习之前首先要搞清楚什么是最小生成树?给定一张边带权的无向图G=(V,E),其中V表示途中点的集合,E表示途中边的集合,=|V|,m=|E|。由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的以可生成树,其中边的权重之和最小被称为无向图G的最小生成树。所以最小生成树是用来计算最小边权问题。⭐最小生成树最常用的有两种算法:Prim算法(解
- 学习总结16
GGJJM
学习
#【模板】最小生成树##题目描述如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出`orz`。##输入格式第一行包含两个整数N,M,表示该图共有N个结点和M条无向边。接下来M行每行包含三个整数Xi,Yi,Zi,表示有一条长度为Zi的无向边连接结点Xi,Yi。##输出格式如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出`orz`。##样例#1###样例输入#
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方