原根(1)

简介:

原根是数论中一个非常重要的概念,它在密码学中有着很广泛的应用。原根从直观上非常好理解,数 g g 对与 p p 是原根,则 gi(mod p) g i ( m o d   p ) 的结果互不相同,其中, i[1,p1],g[2,p1] i ∈ [ 1 , p − 1 ] , g ∈ [ 2 , p − 1 ] 。原根与整数的阶的关系非常密切,下面先从整数的阶讲起。

整数的阶:

根据欧拉定理(这篇博客的最后有讲到),如果 n n 为正整数且 a a 是一个与 n n 互质的整数,那么

aφ(n)1(mod n) a φ ( n ) ≡ 1 ( m o d   n )
因此,至少存在一个正整数满足同余方程 ax1(mod n) a x ≡ 1 ( m o d   n )
1、定义:
a a n n 是互质的正整数,使得 ax1(mod n) a x ≡ 1 ( m o d   n ) 成立的最小正整数 x x 称为 a a n n 的阶,记为 ordna o r d n a
2、定理(1):
如果 a a n n 是互质的整数且 n>0 n > 0 ,那么正整数 x x 是同余式 ax1(mod n) a x ≡ 1 ( m o d   n ) 的一个解当且仅当 ordna|x o r d n a | x
由定理(1),我们可以得到一个推论:
推论(1):
如果 a a n n 是互质的整数且 n>0 n > 0 ,那么 ordna|φ(n) o r d n a | φ ( n )
3、定理(2):
如果 a a n n 是互质的整数且 n>0 n > 0 ,那么正整数 ai=aj(mod n) a i = a j ( m o d   n ) ,当且仅当 i=j(mod ordna) i = j ( m o d   o r d n a ) ,其中i, j为非负整数。

原根:

1、定义:
如果 a a n n 是互质的整数且 n>0 n > 0 ,那么当 ordna=φ(n) o r d n a = φ ( n ) 时,称 a a 为模 n n 的原根。
2、性质:
1) 所有的素数都有原根。
2) 不是所有的整数都有原根。
3、定理(3):
如果 a a n n 是互质的整数且 n>0 n > 0 ,则如果 a a 是模 n n 的一个原根,那么整数 a,a2,,aφ(n) a , a 2 , … , a φ ( n ) 构成模 n n 的既约剩余系。
既约剩余类,即简化剩余类,是指在每个模 n n 的值与 n n 互质的剩余类中,各取一数组成的集合。
这个定理说明了我们在简介中说道的关于原根的一个基本性质,即 ai a i 两两互不相同。
4、定理(4):
当正整数 m m 有原根时,有 φ(φ(m)) φ ( φ ( m ) ) 个原根。

求素数的原根:

因为整数 a a 是原根,即 a a n n 的阶数为 φ(n) φ ( n ) 的整数,所以我们可以通过判断小于 φ(n) φ ( n ) 的整数中是否存在整数 x 使得 ax1(mod n) a x ≡ 1 ( m o d   n ) 。其实也可以再缩小范围,需要检测的数只是 φ(n) φ ( n ) 的质因子即可,这个可以由定理(1)(2)得到。

下面给出求素数原根的算法代码:

long long a[100005], len;
long long q_pow(long long a, long long b, long long c)
{
    long long ans=1;
    while(b)
    {
        if(b%2)
            ans=(ans*a)%c;
        a=(a*a)%c;
        b/=2;
    }
    return ans;
}

// test if g ^ ((p-1)/a) == 1 (mod p)
long long g_test(long long g, long long p)
{
    for(int i=0;iif(q_pow(g, (p-1)/a[i], p)==1)
            return 0;
    return 1;
}

long long primitive_root(long long p)
{
    // get the prime factor of p-1
    len=0;
    long long tmp=p-1;
    for(long long i=2;i<=tmp/i;i++)
    {
        if(tmp%i==0)
        {
            a[len++]=i;
            while(tmp%i==0)
                tmp/=i;
        }
    }
    if(tmp!=1)
        a[len++]=tmp;

    // find the primitive root
    long long g=1;
    while(gif(g_test(g,p))
            return g;
        g++;
    }
}

转载自:https://blog.csdn.net/fuyukai/article/details/50894609

你可能感兴趣的:(原根(1))